Hydrothermal Synthesis of Hedgehog-Shaped ZnS Nanostructures: Structural Characterization and Photocatalytic Applications in Environmental Engineering
- Authors
-
- Keywords:
- Zinc Sulfide (ZnS) Nanostructures, Hydrothermal Synthesis, Hedgehog Morphology, Photocatalysis, Wastewater Treatment
- Abstract
-
The development of efficient photocatalysts for wastewater treatment is a critical challenge in environmental engineering. In this study, hedgehog-shaped zinc sulfide (ZnS) nanostructures were synthesized via a hydrothermal method using zinc nitrate hexahydrate and thiosemicarbazide as precursors. The products were systematically characterized using a variety of analytical techniques, including FT-IR, XRD, SEM, TEM, and UV–Vis. XRD analysis confirmed the formation of phase-pure ZnS with a wurtzite structure, while SEM and TEM images revealed hierarchical microspheres decorated with radially oriented nanorods of approximately 5 nm diameter. Optical analysis revealed a significant blue shift at approximately 290 nanometers and an augmented band gap, suggesting the presence of pronounced quantum confinement effects. The photocatalytic activity of the ZnS nanostructures was evaluated through the degradation of methyl orange dye under UV irradiation, achieving ~75% removal within 5 hours. The hierarchical hedgehog-shaped morphology of the samples provided enhanced light scattering and a high density of active sites, which improved photocatalytic efficiency in comparison with conventional ZnS nanostructures. These findings underscore the potential of ZnS-based nanostructures as sustainable photocatalysts for environmental remediation. Their distinctive architecture renders them well-suited for applications in wastewater treatment, dye removal, and integration into solar-driven photocatalytic systems. This work underscores the significance of morphology-controlled semiconductor nanostructures in propelling green technologies for environmental engineering.
- References
-
Abd Al-Zahra, A., & Al-Sammarraie, A. K. M. A. (2021). Hydrothermal synthesis and characterization of zinc sulfide nanoparticles. Eurasian Chemical Communications, 3(9), 606–613. https://doi.org/10.22034/ECC.2021.293399.1196
Arias Cerón, J. S., González Araoz, M. P., Bautista Hernández, A., Sánchez Ramírez, J. F., Herrera Pérez, J. L., & Mendoza Álvarez, J. G. (2012). Semiconductor Nanocrystals of InP@ZnS: Synthesis and Characterization. Superficies y Vacío, 25(2), 134–138. https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/218
Boulkroune, R., Sebais, M., Messai, Y., Bourzami, R., Schmutz, M., Blanck, C., Halimi, O., & Boudine, B. (2019). Hydrothermal synthesis of strontium-doped ZnS nanoparticles: structural, electronic and photocatalytic investigations. Bulletin of Materials Science, 42(5), 223. https://doi.org/10.1007/s12034-019-1905-2
Gajendiran, J., Gnanam, S., Vijaya Kumar, V., Ramachandran, K., Ramya, J. R., Gokul Raj, S., & Sivakumar, N. (2020). Structural, optical and photocatalytic properties of ZnS spherical/flake nanostructures by sugar-assisted hydrothermal process. Chemical Physics Letters, 754, 137639. https://doi.org/10.1016/j.cplett.2020.137639
Houshmand, R., & Emrooz, H. B. M. (2019). Photocatalytic outcomes for methylene blue degradation from CTAB mediated mesoporous ZnS, synthesized with an insoluble precursor in ethanol media. Nanochemistry Research, 4(1), 64–76. https://doi.org/10.22036/NCR.2019.01.008
Ibupoto, Z., Khun, K., Liu, X., & Willander, M. (2013). Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires. Nanomaterials, 3(3), 564–571. https://doi.org/10.3390/nano3030564
Isac, L., & Enesca, A. (2022). Recent Developments in ZnS-Based Nanostructures Photocatalysts for Wastewater Treatment. International Journal of Molecular Sciences, 23(24), 15668. https://doi.org/10.3390/ijms232415668
Jiang, C., Zhang, W., Zou, G., Yu, W., & Qian, Y. (2007). Hydrothermal synthesis and characterization of ZnS microspheres and hollow nanospheres. Materials Chemistry and Physics, 103(1), 24–27. https://doi.org/10.1016/j.matchemphys.2006.11.001
Jiang, L., Yang, M., Zhu, S., Pang, G., & Feng, S. (2008). Phase Evolution and Morphology Control of ZnS in a Solvothermal System with a Single Precursor. The Journal of Physical Chemistry C, 112(39), 15281–15284. https://doi.org/10.1021/jp804705v
Jubeer, E. M., Manthrammel, M. A., Subha, P. A., Shkir, M., Biju, K. P., & AlFaify, S. A. (2023). Defect engineering for enhanced optical and photocatalytic properties of ZnS nanoparticles synthesized by hydrothermal method. Scientific Reports, 13(1), 16820. https://doi.org/10.1038/s41598-023-43735-1
Kozhevnikova, N. S., Melkozerova, M. A., Enyashin, A. N., Tyutyunnik, A. P., Pasechnik, L. A., Baklanova, I. V., Suntsov, A. Yu., Yushkov, A. A., Buldakova, L. Yu., & Yanchenko, M. Yu. (2022). Janus ZnS nanoparticles: Synthesis and photocatalytic properties. Journal of Physics and Chemistry of Solids, 161, 110459. https://doi.org/10.1016/j.jpcs.2021.110459
Lee, G.-J., & Wu, J. J. (2017). Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications — A review. Powder Technology, 318, 8–22. https://doi.org/10.1016/j.powtec.2017.05.022
Liang, X., Xing, L., Xiang, J., Zhang, F., Jiao, J., Cui, L., Song, B., Chen, S., Zhao, C., & Sai, H. (2012). The Role of the Liquid–Liquid Interface in the Synthesis of Nonequilibrium Crystalline Wurtzite ZnS at Room Temperature. Crystal Growth & Design, 12(3), 1173–1179. https://doi.org/10.1021/cg2011474
Lim, T., Seol, S. K., Kim, H.-J., Huh, Y. H., Jung, Y., Chung, H.-S., & Kim, J. H. (2022). In situ synthesis of hierarchically-assembled three-dimensional ZnS nanostructures and 3D printed visualization. Scientific Reports, 12(1), 16955. https://doi.org/10.1038/s41598-022-21297-y
Meena, R. C., & Kumar, V. (2011). Studies on photodegradation of Tropaeolin O (Acid Orange 6) in aqueous solution using immobilized Dowex-11 photocatalyst. Journal of the Indian Chemical Society, 88, 257–264.
Motejadded Emrooz, H. B., & Rahmani, A. R. (2017). Synthesis, characterization and photocatalytic behavior of mesoporous ZnS nanoparticles prepared by hybrid salt extraction and structure directing agent method. Materials Science in Semiconductor Processing, 72, 15–21. https://doi.org/10.1016/j.mssp.2017.08.018
Riazian, M. (2023). Enhancement of the photocatalytic activity of fabricated ZnS nanoparticles in the photodegradation of methylene blue. Physica Scripta, 98(6), 065956. https://doi.org/10.1088/1402-4896/acd036
Riazian, M., & Yekrangisendi, A. (2023). Synthesis of ZnS Nanoparticles via a Sonochemical Method: Photocatalytic Activity and Optical Properties. Physical Chemistry Research, 11(3), 575–587. https://doi.org/10.22036/PCR.2022.341626.2099
Ru, F., Xia, J., Li, X., Wang, Y., Hua, Z., Shao, R., Wang, X., Lee, C.-S., & Meng, X.-M. (2021). Al 2 O 3 buffer-facilitated epitaxial growth of high-quality ZnO/ZnS core/shell nanorod arrays. Nanoscale, 13(26), 11525–11533. https://doi.org/10.1039/D1NR02613E
Sabaghi, V., Davar, F., & Fereshteh, Z. (2018). ZnS nanoparticles prepared via simple reflux and hydrothermal method: Optical and photocatalytic properties. Ceramics International, 44(7), 7545–7556. https://doi.org/10.1016/j.ceramint.2018.01.159
Su, Q., Zou, R., Su, Y., & Fan, S. (2018). Morphology Control and Growth Mechanism Study of Quantum-Sized ZnS Nanocrystals from Single-Source Precursors. Journal of Nanoscience and Nanotechnology, 18(10), 6850–6858. https://doi.org/10.1166/jnn.2018.15516
Ücker, C. L., Almeida, S. R., Cantoneiro, R. G., Diehl, L. O., Cava, S., Moreira, M. L., Longo, E., & Raubach, C. W. (2023). Study of CaTiO3–ZnS heterostructure obtained by microwave-assisted solvothermal synthesis and its application in photocatalysis. Journal of Physics and Chemistry of Solids, 172, 111050. https://doi.org/10.1016/j.jpcs.2022.111050
Viswanath, R., Naik, H. S. B., Somalanaik, Y. K. G., Neelanjeneallu, P. K. P., Harish, K. N., & Prabhakara, M. C. (2014). Studies on Characterization, Optical Absorption, and Photoluminescence of Yttrium Doped ZnS Nanoparticles. Journal of Nanotechnology, 2014, 1–8. https://doi.org/10.1155/2014/924797
Wang, G., Huang, B., Li, Z., Lou, Z., Wang, Z., Dai, Y., & Whangbo, M.-H. (2015). Synthesis and characterization of ZnS with controlled amount of S vacancies for photocatalytic H2 production under visible light. Scientific Reports, 5(1), 8544. https://doi.org/10.1038/srep08544
Wang, H., Chen, Z., Cheng, Q., & Yuan, L. (2009). Solvothermal synthesis and optical properties of single-crystal ZnS nanorods. Journal of Alloys and Compounds, 478(1–2), 872–875. https://doi.org/10.1016/j.jallcom.2008.12.039
Wang, J., You, T., Feng, H., Chen, K., & Xu, B. (2013). Selective synthesis of ZnS nanowire-bundles and nanowires via different growth mechanisms. Journal of Crystal Growth, 374, 60–64. https://doi.org/10.1016/j.jcrysgro.2013.03.050
Xu, S. H., Fei, G. T., Huang, J. Y., Xia, K., & Wang, B. (2024). Controllable hydrothermal synthesis of hollow ZnS nanospheres: Morphological evolution mechanism and photocatalytic performance. Ceramics International, 50(1), 1556–1563. https://doi.org/10.1016/j.ceramint.2023.10.247
Zhou, D.-J., Xie, X.-Y., Zhang, Y., Guo, D.-Y., Zhou, Y.-J., & Xie, J.-F. (2016). Facile synthesis of ZnS nanorods in PEG and their spectral performance. Materials Research Express, 3(10), 105023. https://doi.org/10.1088/2053-1591/3/10/105023
Zou, Z., Yang, X., Zhang, P., Zhang, Y., Yan, X., Zhou, R., Liu, D., Xu, L., & Gui, J. (2019). Trace carbon-hybridized ZnS/ZnO hollow nanospheres with multi-enhanced visible-light photocatalytic performance. Journal of Alloys and Compounds, 775, 481–489. https://doi.org/10.1016/j.jallcom.2018.10.116
- Downloads
- Additional Files
- Published
- 2024-02-12
- Section
- Research Article/Original Research
- License
-
Copyright (c) 2024 Marzieh Haghverdi, Akram Karbalaee Hosseini, Azadeh Tadjarodi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access Licences
User rights
All articles published open access will be immediately and permanently free for everyone to read and download, copy and distribute.
How to Cite
Similar Articles
- Abdullah Hamid Radhi Al-Rekabi, Flexural Behavior of Sustainable SCC Beams with Treated Recycled Aggregate and Steel Fibers: An Experimental and DIC Study , Steps For Civil, Constructions and Environmental Engineering: Vol. 3 No. 3 (2025): July - September 2025
- Kholoud Kassab, Hajar Nasser, Tareq Araj, Modified Carbon Paste Electrode for Sensitive Detection of Organophosphate Pesticide Dichlorvos in Environmental Water Samples , Steps For Civil, Constructions and Environmental Engineering: Vol. 1 No. 2 (2023): October - December 2023
You may also start an advanced similarity search for this article.
