Modified Carbon Paste Electrode for Sensitive Detection of Organophosphate Pesticide Dichlorvos in Environmental Water Samples
- Authors
-
- Keywords:
- Dichlorvos Detection, Modified Carbon Paste Electrode, Organophosphorus Pesticides, Electrochemical Sensor, Environmental Water Monitoring
- Abstract
-
The pervasive utilization of organophosphorus pesticides, exemplified by dichlorvos, engenders substantial environmental and public health concerns due to their capacity to persist in water and agricultural systems. This study presents the development of a modified carbon paste electrode that incorporates zinc oxide as an electroactive material. This modified electrode is designed for the rapid, sensitive, and selective detection of dichlorvos in aqueous media. The composition of the electrodes was optimized through the adjustment of the proportions of graphite powder, plasticizer, and active material. This adjustment yielded a Nernstian response with a slope of 56.68 mV/decade across a concentration range of 1×10-3 to 1×10-6 mol/L. The sensor exhibited a detection limit of 2.458×10-6 mol/L, stable performance within a pH range of 6–8, and a response time of 39–47 seconds. Selectivity studies confirmed minimal interference from common ions except phosphate, while validation against high-performance liquid chromatography (HPLC) demonstrated strong agreement, with recovery rates approaching 99%. The electrode demonstrated stability over a period of more than two months, thereby substantiating its practical durability. A comparison of the proposed method with conventional analytical techniques reveals its cost-effectiveness, portability, and field-deployability as an alternative for pesticide monitoring. Its application in environmental engineering is particularly relevant for water quality assessment, pollution control, and sustainable agricultural management.
- References
-
Abass, A. M., Hassan, O. S., Al-Bassam, A. Z. M., Abass, M., Hassan, O. S., & Al-Bassam, A. Z. M. (2022). Usage and Characteristics of Plasticizers as Ion-Selective Electrodes: A Short Review. Journal of Chemical Reviews, 4(4), 364–373. https://doi.org/10.22034/JCR.2022.352071.1180
Abdel-Haleem, F. M., Mahmoud, S., Abdel-Ghani, N. E. T., El Nashar, R. M., Bechelany, M., & Barhoum, A. (2021). Polyvinyl Chloride Modified Carbon Paste Electrodes for Sensitive Determination of Levofloxacin Drug in Serum, Urine, and Pharmaceutical Formulations. Sensors, 21(9), 3150. https://doi.org/10.3390/s21093150
Audic, J.-L., & Chaufer, B. (2005). Influence of plasticizers and crosslinking on the properties of biodegradable films made from sodium caseinate. European Polymer Journal, 41(8), 1934–1942. https://doi.org/10.1016/j.eurpolymj.2005.02.023
Bedlechowicz, I., Maj-Żurawska, M., Sokalski, T., & Hulanicki, A. (2002). Effect of a plasticizer on the detection limit of calcium-selective electrodes. Journal of Electroanalytical Chemistry, 537(1–2), 111–118. https://doi.org/10.1016/S0022-0728(02)01256-1
Carey, C. (2015). Plasticizer Effects in the PVC Membrane of the Dibasic Phosphate Selective Electrode. Chemosensors, 3(4), 284–294. https://doi.org/10.3390/chemosensors3040284
Chen, X., Lin, Z., Cai, Z., Chen, X., & Wang, X. (2008). Electrochemiluminescence detection of dichlorvos pesticide in luminol–CTAB medium. Talanta, 76(5), 1083–1087. https://doi.org/10.1016/j.talanta.2008.05.007
De Souza, D., & Machado, S. A. S. (2005). Electroanalytical method for determination of the pesticide dichlorvos using gold-disk microelectrodes. Analytical and Bioanalytical Chemistry, 382(7), 1720–1725. https://doi.org/10.1007/s00216-005-3324-z
Derbalah, A., Chidya, R., Jadoon, W., & Sakugawa, H. (2019). Temporal trends in organophosphorus pesticides use and concentrations in river water in Japan, and risk assessment. Journal of Environmental Sciences, 79, 135–152. https://doi.org/10.1016/j.jes.2018.11.019
Hou, J., Dong, G., Tian, Z., Lu, J., Wang, Q., Ai, S., & Wang, M. (2016). A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu (II) system. Food Chemistry, 202, 81–87. https://doi.org/10.1016/j.foodchem.2015.11.134
Hwang, J.-J., Bibi, A., Chen, Y.-C., Luo, K.-H., Huang, H.-Y., & Yeh, J.-M. (2022). Comparative Studies on Carbon Paste Electrode Modified with Electroactive Polyamic Acid and Corresponding Polyimide without/with Attached Sulfonated Group for Electrochemical Sensing of Ascorbic Acid. Polymers, 14(17), 3487. https://doi.org/10.3390/polym14173487
Jaffrezic-Renault, N. (2001). New Trends in Biosensors for Organophosphorus Pesticides. Sensors, 1(2), 60–74. https://doi.org/10.3390/s10100060
Jain, R., Jain, B., Chauhan, V., Deswal, B., Kaur, S., Sharma, S., & A. S. Abourehab, M. (2023). Simple determination of dichlorvos in cases of fatal intoxication by gas Chromatography-Mass spectrometry. Journal of Chromatography B, 1215, 123582. https://doi.org/10.1016/j.jchromb.2022.123582
Jiang, W., Yang, Z., Tong, F., Zhang, S., Zhu, L., Wang, L., Huang, L., Liu, K., Zheng, M., Zhou, Y., Hou, R., & Liu, Y. (2023). Two birds with one stone: An enzyme-regulated ratiometric fluorescent and photothermal dual-mode probe for organophosphorus pesticide detection. Biosensors and Bioelectronics, 224, 115074. https://doi.org/10.1016/j.bios.2023.115074
Kaushal, J., Khatri, M., & Arya, S. K. (2021). A treatise on Organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination. Ecotoxicology and Environmental Safety, 207, 111483. https://doi.org/10.1016/j.ecoenv.2020.111483
Khadem, M., Faridbod, F., Norouzi, P., Rahimi Foroushani, A., Ganjali, M. R., Shahtaheri, S. J., & Yarahmadi, R. (2017). Modification of Carbon Paste Electrode Based on Molecularly Imprinted Polymer for Electrochemical Determination of Diazinon in Biological and Environmental Samples. Electroanalysis, 29(3), 708–715. https://doi.org/10.1002/elan.201600293
Kim, H., Hummel, J., Sudduth, K., & Birrell, S. (2007). Evaluation of Phosphate Ion-Selective Membranes and Cobalt-Based Electrodes for Soil Nutrient Sensing. Transactions of the ASABE, 50(2), 415–425. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ars.usda.gov/ARSUserFiles/50701000/cswq-0293-201375.pdf
Le Goff, T., Braven, J., Ebdon, L., & Scholefield, D. (2004). Phosphate-selective electrodes containing immobilised ionophores. Analytica Chimica Acta, 510(2), 175–182. https://doi.org/10.1016/j.aca.2004.01.015
Liu, C., Qiang, Z., Adams, C., Tian, F., & Zhang, T. (2009). Kinetics and mechanism for degradation of dichlorvos by permanganate in drinking water treatment. Water Research, 43(14), 3435–3442. https://doi.org/10.1016/j.watres.2009.05.001
Ma, J., Xiao, R., Li, J., Zhao, X., Shi, B., & Li, S. (2009). Determination of Organophosphorus Pesticides in Underground Water by SPE-GC-MS. Journal of Chromatographic Science, 47(2), 110–115. https://doi.org/10.1093/chromsci/47.2.110
Mostafa, G. (2010). Electrochemical Biosensors for the Detection of Pesticides~!2010-02-01~!2010-06-30~!2010-07-21~! The Open Electrochemistry Journal, 2(1), 22–42. https://doi.org/10.2174/1876505X01002010022
Nasser, H. N., & Alabid, K. I. (2022). Preparation of a Selective Electrode Based on a Modified Carbon Paste for Determination of Phenol in Water Solutions and Study it’s by Potential Method. Tishreen University Journal of Research and Scientific Studies - Basic Sciences Series, 44(3), 83–102.
Nasser, H. N., Baddour, E. M., & Khali, M. B. (2019). Manufacturing of selective electrode using modified graphite paste to determine cadmium ion in aqueous solution and studing its potential properties. Tishreen University Journal of Research and Scientific Studies - Basic Sciences Series, 41(5), 23–40.
Okdeh, D., Sakr. I. A, & Araj, T. A. (2023). Determination of dimethoate pesticide residues in water in the environment surrounding Lake Al-Sin. Tishreen University Journal of Research and Scientific Studies - Basic Sciences Series, 44(6), 29–44.
Richter, P., & Corcoran, J. (1997). Potential for Human Exposure. Agency for Toxic Subscances and Disease Registry (US). https://www.ncbi.nlm.nih.gov/books/NBK595603/
Sidhu, G. K., Singh, S., Kumar, V., Dhanjal, D. S., Datta, S., & Singh, J. (2019). Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Critical Reviews in Environmental Science and Technology, 49(13), 1135–1187. https://doi.org/10.1080/10643389.2019.1565554
Sinyangwe, D. M., Mbewe, B., & Sijumbila, G. (2016). Determination of dichlorvos residue levels in vegetables sold in Lusaka, Zambia. Pan African Medical Journal, 23. https://doi.org/10.11604/pamj.2016.23.113.8211
Tantawy, M. A., Wahba, I. A., Saad, S. S., & Ramadan, N. K. (2022). Two fabricated carbon paste electrodes for novel potentiometric determination of probenecid in dosage form and human plasma. Scientific Reports, 12(1), 20418. https://doi.org/10.1038/s41598-022-24920-0
Umezawa, Y., Bühlmann, P., Umezawa, K., Tohda, K., & Amemiya, S. (2000). Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report). Pure and Applied Chemistry, 72(10), 1851–2082. https://doi.org/10.1351/pac200072101851
Wang, J. (2001). Development of a luminol-based chemiluminescence flow-injection method for the determination of dichlorvos pesticide. Talanta, 54(6), 1185–1193. https://doi.org/10.1016/S0039-9140(01)00388-5
Wang, J., Teng, Y., Zhai, Y., Yue, W., & Pan, Z. (2022). Spatiotemporal distribution and risk assessment of organophosphorus pesticides in surface water and groundwater on the North China Plain, China. Environmental Research, 204, 112310. https://doi.org/10.1016/j.envres.2021.112310
Xu, Z., Fang, G., & Wang, S. (2010). Molecularly imprinted solid phase extraction coupled to high-performance liquid chromatography for determination of trace dichlorvos residues in vegetables. Food Chemistry, 119(2), 845–850. https://doi.org/10.1016/j.foodchem.2009.08.047
Yu, H., Wang, M., Cao, J., She, Y., Zhu, Y., Ye, J., Wang, J., Lao, S., & Abd El-Aty, A. M. (2022). Determination of Dichlorvos in Pears by Surface-Enhanced Raman Scattering (SERS) with Catalysis by Platinum Coated Gold Nanoparticles. Analytical Letters, 55(3), 427–437. https://doi.org/10.1080/00032719.2021.1938104
Zayed, M. A., Mahmoud, W. H., Abbas, A. A., Ali, A. E., & Mohamed, G. G. (2020). A highly sensitive, selective and renewable carbon paste electrode based on a unique acyclic diamide ionophore for the potentiometric determination of lead ions in polluted water samples. RSC Advances, 10(30), 17552–17560. https://doi.org/10.1039/D0RA01435D
- Downloads
- Additional Files
- Published
- 2023-11-15
- Section
- Research Article/Original Research
- License
-
Copyright (c) 2023 Kholoud Kassab, Hajar Nasser, Tareq Araj

This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access Licences
User rights
All articles published open access will be immediately and permanently free for everyone to read and download, copy and distribute.
