AI-Guided Nanorobots for In Vivo Immune Cell Programming: Bridging Nanomedicine and Cancer Immunotherapy
- Authors
-
-
Athraa Turkey Mtushar
Al-Rafidain University College
-
- Keywords:
- Cancer Immunotherapy, AI-Guided Nanorobots, In Vivo Immune Cell Programming, Tumor Microenvironment, Personalized Nanomedicine
- Abstract
-
Recent advancements at the intersection of nanotechnology, artificial intelligence (AI), and immunotherapy are transforming the field of cancer treatment. This review explores the transformative potential of AI-guided nanorobots for in vivo immune cell programming. This strategy overcomes the limitations of conventional ex vivo adoptive cell therapies, including high cost, limited scalability, and reduced efficacy in solid tumors. We examine the principles of immune cell engineering, including CAR-T, CAR-NK, and TCR therapies, as well as the associated clinical challenges. Furthermore, we discuss how AI-guided nanorobots can autonomously navigate biological systems to deliver genetic or immunomodulatory payloads, remodel the tumor microenvironment, and enhance therapeutic precision. By integrating multimodal sensing and real-time decision-making capabilities, these nanorobots represent a novel class of autonomous agents that can detect cancer early, activate the immune system, and potentially intervene preemptively. This convergence of disciplines signals a new frontier in personalized, minimally invasive cancer therapy, offering hope for broader accessibility and improved outcomes. This review outlines a transformative approach to autonomous, minimally invasive, and personalized immune modulation, providing a blueprint for the next generation of cancer immunotherapy.
- References
-
Abodunrin, F., Olson, D. J., Emehinola, O., & Bestvina, C. M. (2025). Adopting tomorrow’s therapies today: a perspective review of adoptive cell therapy in lung cancer. Therapeutic Advances in Medical Oncology, 17. https://doi.org/10.1177/17588359251320280
Abu Taha, A. H., Massa, N. M., Abu-Nasser, B. S., & Abu-Naser, S. S. (2025). The Intersection of Nanotechnology and Artificial Intelligence: Innovations and Future Prospects. International Journal of Academic Information Systems Research , 9(4), 22–27.
Aggarwal, M., & Kumar, S. (2022). The Use of Nanorobotics in the Treatment Therapy of Cancer and Its Future Aspects: A Review. Cureus. https://doi.org/10.7759/cureus.29366
AI Nanobots: Transforming Pharma’s Precision Medicine Landscape - Eularis. (n.d.). Eularis. https://eularis.com/ai-nanobots-transforming-pharmas-precision-medicine-landscape/
Balkhi, S., Zuccolotto, G., Di Spirito, A., Rosato, A., & Mortara, L. (2025). CAR-NK cell therapy: promise and challenges in solid tumors. Frontiers in Immunology, 16. https://doi.org/10.3389/fimmu.2025.1574742
Bhange, M., & Telange, D. (2025). Convergence of nanotechnology and artificial intelligence in the fight against liver cancer: a comprehensive review. Discover Oncology, 16(1), 77. https://doi.org/10.1007/s12672-025-01821-y
Booth, S., & Roland, J. (2024). Immunotherapy: Risks & Side Effects. WebMD. https://www.webmd.com/cancer/immunotherapy-risks-benefits
CAR T Cells: Engineering Immune Cells to Treat Cancer - NCI. (n.d.). https://www.cancer.gov/about-cancer/treatment/research/car-t-cells
Fu, B., Luo, D., Li, C., Feng, Y., & Liang, W. (2025). Advances in micro-/nanorobots for cancer diagnosis and treatment: propulsion mechanisms, early detection, and cancer therapy. Frontiers in Chemistry, 13. https://doi.org/10.3389/fchem.2025.1537917
Glécia Virgolino da Silva Luz, Kleber Vânio Gomes Barros, Fábio Vladimir Calixto de Araújo, Gabriela Barbosa da Silva, Pedro Augusto Ferreira da Silva, Roxana Claudia Iquize Condori, & Lourdes Mattos Brasil. (2016). Nanorobotics in Drug Delivery Systems for Treatment of Cancer: A Review. Journal of Materials Science and Engineering A, 6(3). https://doi.org/10.17265/2161-6213/2016.5-6.005
Greenbaum, U., Dumbrava, E. I., Biter, A. B., Haymaker, C. L., & Hong, D. S. (2021). Engineered T-cell Receptor T Cells for Cancer Immunotherapy. Cancer Immunology Research, 9(11), 1252–1261. https://doi.org/10.1158/2326-6066.CIR-21-0269
Greenberg, P. D. (n.d.). Adoptive Cell Therapy. How Cellular Immunotherapies Are Changing the Outlook for Cancer Patients. https://www.cancerresearch.org/immunotherapy-by-treatment-types/adoptive-cell-therapy
Huhulea, E. N., Huang, L., Eng, S., Sumawi, B., Huang, A., Aifuwa, E., Hirani, R., Tiwari, R. K., & Etienne, M. (2025). Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions. Biomedicines, 13(4), 951. https://doi.org/10.3390/biomedicines13040951
Immunotherapy Side Effects. (2019). Cancer Research Institute. https://www.cancerresearch.org/immunotherapy-side-effects
Irvine, D. J., Maus, M. V., Mooney, D. J., & Wong, W. W. (2022). The future of engineered immune cell therapies. Science, 378(6622), 853–858. https://doi.org/10.1126/science.abq6990
Kavousinejad, S. (2024). Simulation of Nanorobots with Artificial Intelligence and Reinforcement Learning for Advanced Cancer Cell Detection and Tracking.
Komala, C. R., Raja, J., Marotrao, S. S., Neelima, N., Sujatha, R., & Chidambarathanu, K. (2024). AI algorithms for Autonomous Robotics Navigation. 2024 Second International Conference Computational and Characterization Techniques in Engineering & Sciences (IC3TES), 1–4. https://doi.org/10.1109/IC3TES62412.2024.10877509
Logesh, T., Surya, M., Shyam, K., Chandran, M., Maheshwari, A., & Kajal, C. (2024). A Pilot Study of Intelligent Control of Nanorobots Using AI & ML . International Journal for Multidisciplinary Research, 6(6), 1–12.
Mi, P. (2020). Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 10(10), 4557–4588. https://doi.org/10.7150/thno.38069
Mitra, A., Barua, A., Huang, L., Ganguly, S., Feng, Q., & He, B. (2023). From bench to bedside: the history and progress of CAR T cell therapy. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1188049
Morcillo-Martín-Romo, P., Valverde-Pozo, J., Ortiz-Bueno, M., Arnone, M., Espinar-Barranco, L., Espinar-Barranco, C., & García-Rubiño, M. E. (2025). The Role of NK Cells in Cancer Immunotherapy: Mechanisms, Evasion Strategies, and Therapeutic Advances. Biomedicines, 13(4), 857. https://doi.org/10.3390/biomedicines13040857
Naik, M. H., Satyanarayana, J., & Kudari, R. K. (2024). Nanorobots in drug delivery systems and treatment of cancer. Characterization and Application of Nanomaterials, 7(2), 2539. https://doi.org/10.24294/can.v7i2.2539
Onkar, B., Krushna, J., & Tushar, S. (2024). A Review on Nanobots- A New Hope for Cancer Patients. INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES, 2(11), 1121–1129.
Ordóñez, S. S. (n.d.). Smart nano-bio-devices. Institute for Bioengineering of Catalonia. Retrieved November 8, 2025, from https://ibecbarcelona.eu/nanodevices
Pires, C. F., Rosa, F. F., Kurochkin, I., & Pereira, C.-F. (2019). Understanding and Modulating Immunity With Cell Reprogramming. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.02809
Program for Immune Engineering. (n.d.). Regon Institute. https://ragoninstitute.org/program/immune-engineering/
Stephan, M. T. (2021). Empowering patients from within: Emerging nanomedicines for in vivo immune cell reprogramming. Seminars in Immunology, 56, 101537. https://doi.org/10.1016/j.smim.2021.101537
Suma Sri Potti, M. K. V. K. N. B. S. B. A. P. R. D. G. M. N. D. M. G. R. (2025). Review On Nanorobots in Cancer Treatment. International Journal of Pharmaceutical Sciences, 03(02), 1898–1908. https://doi.org/10.5281/ZENODO.14913855
Sun, D., Shi, X., Li, S., Wang, X., Yang, X., & Wan, M. (2024). CAR-T cell therapy: A breakthrough in traditional cancer treatment strategies (Review). Molecular Medicine Reports, 29(3), 47. https://doi.org/10.3892/mmr.2024.13171
Sun, T., Chen, J., Zhang, J., Zhao, Z., Zhao, Y., Sun, J., & Chang, H. (2024). Application of micro/nanorobot in medicine. Frontiers in Bioengineering and Biotechnology, 12. https://doi.org/10.3389/fbioe.2024.1347312
Team EMB. (2025, June 30). Nano-Robotics in Medical Diagnostics and Treatment. EMB Global. https://blog.emb.global/nano-robotics-in-medical-diagnostics-and-treatment/
Weerarathna, I. N., Kumar, P., Dzoagbe, H. Y., & Kiwanuka, L. (2025). Advancements in Micro/Nanorobots in Medicine: Design, Actuation, and Transformative Application. ACS Omega, 10(6), 5214–5250. https://doi.org/10.1021/acsomega.4c09806
Zhang, D., Liu, S., Guan, J., & Mou, F. (2022). “Motile-targeting” drug delivery platforms based on micro/nanorobots for tumor therapy. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.1002171
- Published
- 2025-11-26
- Section
- Review Article
- Categories
- License
-
Copyright (c) 2025 Athraa Turkey Mtushar

This work is licensed under a Creative Commons Attribution 4.0 International License.
