AI-Guided Nanorobots for In Vivo Immune Cell Programming: Bridging Nanomedicine and Cancer Immunotherapy

Authors
  • Athraa Turkey Mtushar

    Al-Rafidain University College
Keywords:
Cancer Immunotherapy, AI-Guided Nanorobots, In Vivo Immune Cell Programming, Tumor Microenvironment, Personalized Nanomedicine
Abstract

Recent advancements at the intersection of nanotechnology, artificial intelligence (AI), and immunotherapy are transforming the field of cancer treatment. This review explores the transformative potential of AI-guided nanorobots for in vivo immune cell programming. This strategy overcomes the limitations of conventional ex vivo adoptive cell therapies, including high cost, limited scalability, and reduced efficacy in solid tumors. We examine the principles of immune cell engineering, including CAR-T, CAR-NK, and TCR therapies, as well as the associated clinical challenges. Furthermore, we discuss how AI-guided nanorobots can autonomously navigate biological systems to deliver genetic or immunomodulatory payloads, remodel the tumor microenvironment, and enhance therapeutic precision. By integrating multimodal sensing and real-time decision-making capabilities, these nanorobots represent a novel class of autonomous agents that can detect cancer early, activate the immune system, and potentially intervene preemptively. This convergence of disciplines signals a new frontier in personalized, minimally invasive cancer therapy, offering hope for broader accessibility and improved outcomes. This review outlines a transformative approach to autonomous, minimally invasive, and personalized immune modulation, providing a blueprint for the next generation of cancer immunotherapy.

 

References

Abodunrin, F., Olson, D. J., Emehinola, O., & Bestvina, C. M. (2025). Adopting tomorrow’s therapies today: a perspective review of adoptive cell therapy in lung cancer. Therapeutic Advances in Medical Oncology, 17. https://doi.org/10.1177/17588359251320280

Abu Taha, A. H., Massa, N. M., Abu-Nasser, B. S., & Abu-Naser, S. S. (2025). The Intersection of Nanotechnology and Artificial Intelligence: Innovations and Future Prospects. International Journal of Academic Information Systems Research , 9(4), 22–27.

Aggarwal, M., & Kumar, S. (2022). The Use of Nanorobotics in the Treatment Therapy of Cancer and Its Future Aspects: A Review. Cureus. https://doi.org/10.7759/cureus.29366

AI Nanobots: Transforming Pharma’s Precision Medicine Landscape - Eularis. (n.d.). Eularis. https://eularis.com/ai-nanobots-transforming-pharmas-precision-medicine-landscape/

Balkhi, S., Zuccolotto, G., Di Spirito, A., Rosato, A., & Mortara, L. (2025). CAR-NK cell therapy: promise and challenges in solid tumors. Frontiers in Immunology, 16. https://doi.org/10.3389/fimmu.2025.1574742

Bhange, M., & Telange, D. (2025). Convergence of nanotechnology and artificial intelligence in the fight against liver cancer: a comprehensive review. Discover Oncology, 16(1), 77. https://doi.org/10.1007/s12672-025-01821-y

Booth, S., & Roland, J. (2024). Immunotherapy: Risks & Side Effects. WebMD. https://www.webmd.com/cancer/immunotherapy-risks-benefits

CAR T Cells: Engineering Immune Cells to Treat Cancer - NCI. (n.d.). https://www.cancer.gov/about-cancer/treatment/research/car-t-cells

Fu, B., Luo, D., Li, C., Feng, Y., & Liang, W. (2025). Advances in micro-/nanorobots for cancer diagnosis and treatment: propulsion mechanisms, early detection, and cancer therapy. Frontiers in Chemistry, 13. https://doi.org/10.3389/fchem.2025.1537917

Glécia Virgolino da Silva Luz, Kleber Vânio Gomes Barros, Fábio Vladimir Calixto de Araújo, Gabriela Barbosa da Silva, Pedro Augusto Ferreira da Silva, Roxana Claudia Iquize Condori, & Lourdes Mattos Brasil. (2016). Nanorobotics in Drug Delivery Systems for Treatment of Cancer: A Review. Journal of Materials Science and Engineering A, 6(3). https://doi.org/10.17265/2161-6213/2016.5-6.005

Greenbaum, U., Dumbrava, E. I., Biter, A. B., Haymaker, C. L., & Hong, D. S. (2021). Engineered T-cell Receptor T Cells for Cancer Immunotherapy. Cancer Immunology Research, 9(11), 1252–1261. https://doi.org/10.1158/2326-6066.CIR-21-0269

Greenberg, P. D. (n.d.). Adoptive Cell Therapy. How Cellular Immunotherapies Are Changing the Outlook for Cancer Patients. https://www.cancerresearch.org/immunotherapy-by-treatment-types/adoptive-cell-therapy

Huhulea, E. N., Huang, L., Eng, S., Sumawi, B., Huang, A., Aifuwa, E., Hirani, R., Tiwari, R. K., & Etienne, M. (2025). Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions. Biomedicines, 13(4), 951. https://doi.org/10.3390/biomedicines13040951

Immunotherapy Side Effects. (2019). Cancer Research Institute. https://www.cancerresearch.org/immunotherapy-side-effects

Irvine, D. J., Maus, M. V., Mooney, D. J., & Wong, W. W. (2022). The future of engineered immune cell therapies. Science, 378(6622), 853–858. https://doi.org/10.1126/science.abq6990

Kavousinejad, S. (2024). Simulation of Nanorobots with Artificial Intelligence and Reinforcement Learning for Advanced Cancer Cell Detection and Tracking.

Komala, C. R., Raja, J., Marotrao, S. S., Neelima, N., Sujatha, R., & Chidambarathanu, K. (2024). AI algorithms for Autonomous Robotics Navigation. 2024 Second International Conference Computational and Characterization Techniques in Engineering & Sciences (IC3TES), 1–4. https://doi.org/10.1109/IC3TES62412.2024.10877509

Logesh, T., Surya, M., Shyam, K., Chandran, M., Maheshwari, A., & Kajal, C. (2024). A Pilot Study of Intelligent Control of Nanorobots Using AI & ML . International Journal for Multidisciplinary Research, 6(6), 1–12.

Mi, P. (2020). Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 10(10), 4557–4588. https://doi.org/10.7150/thno.38069

Mitra, A., Barua, A., Huang, L., Ganguly, S., Feng, Q., & He, B. (2023). From bench to bedside: the history and progress of CAR T cell therapy. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1188049

Morcillo-Martín-Romo, P., Valverde-Pozo, J., Ortiz-Bueno, M., Arnone, M., Espinar-Barranco, L., Espinar-Barranco, C., & García-Rubiño, M. E. (2025). The Role of NK Cells in Cancer Immunotherapy: Mechanisms, Evasion Strategies, and Therapeutic Advances. Biomedicines, 13(4), 857. https://doi.org/10.3390/biomedicines13040857

Naik, M. H., Satyanarayana, J., & Kudari, R. K. (2024). Nanorobots in drug delivery systems and treatment of cancer. Characterization and Application of Nanomaterials, 7(2), 2539. https://doi.org/10.24294/can.v7i2.2539

Onkar, B., Krushna, J., & Tushar, S. (2024). A Review on Nanobots- A New Hope for Cancer Patients. INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES, 2(11), 1121–1129.

Ordóñez, S. S. (n.d.). Smart nano-bio-devices. Institute for Bioengineering of Catalonia. Retrieved November 8, 2025, from https://ibecbarcelona.eu/nanodevices

Pires, C. F., Rosa, F. F., Kurochkin, I., & Pereira, C.-F. (2019). Understanding and Modulating Immunity With Cell Reprogramming. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.02809

Program for Immune Engineering. (n.d.). Regon Institute. https://ragoninstitute.org/program/immune-engineering/

Stephan, M. T. (2021). Empowering patients from within: Emerging nanomedicines for in vivo immune cell reprogramming. Seminars in Immunology, 56, 101537. https://doi.org/10.1016/j.smim.2021.101537

Suma Sri Potti, M. K. V. K. N. B. S. B. A. P. R. D. G. M. N. D. M. G. R. (2025). Review On Nanorobots in Cancer Treatment. International Journal of Pharmaceutical Sciences, 03(02), 1898–1908. https://doi.org/10.5281/ZENODO.14913855

Sun, D., Shi, X., Li, S., Wang, X., Yang, X., & Wan, M. (2024). CAR-T cell therapy: A breakthrough in traditional cancer treatment strategies (Review). Molecular Medicine Reports, 29(3), 47. https://doi.org/10.3892/mmr.2024.13171

Sun, T., Chen, J., Zhang, J., Zhao, Z., Zhao, Y., Sun, J., & Chang, H. (2024). Application of micro/nanorobot in medicine. Frontiers in Bioengineering and Biotechnology, 12. https://doi.org/10.3389/fbioe.2024.1347312

Team EMB. (2025, June 30). Nano-Robotics in Medical Diagnostics and Treatment. EMB Global. https://blog.emb.global/nano-robotics-in-medical-diagnostics-and-treatment/

Weerarathna, I. N., Kumar, P., Dzoagbe, H. Y., & Kiwanuka, L. (2025). Advancements in Micro/Nanorobots in Medicine: Design, Actuation, and Transformative Application. ACS Omega, 10(6), 5214–5250. https://doi.org/10.1021/acsomega.4c09806

Zhang, D., Liu, S., Guan, J., & Mou, F. (2022). “Motile-targeting” drug delivery platforms based on micro/nanorobots for tumor therapy. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.1002171

Cover Image
Downloads
Published
2025-11-26
Section
Review Article
License

Copyright (c) 2025 Athraa Turkey Mtushar

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How to Cite

Mtushar, A. T. (2025). AI-Guided Nanorobots for In Vivo Immune Cell Programming: Bridging Nanomedicine and Cancer Immunotherapy. Middle Eastern Cancer and Oncology Journal, 1(4), 11-19. https://doi.org/10.61706/MECOJ160179