Cancer Vaccines: Breakthroughs, Challenges, and Future Perspectives in Oncology

Authors
  • Startsev V. Yu

    St. Petersburg State Pediatric Medical University, St. Petersburg, Russian Federation
Keywords:
Cancer Vaccines, Promises, Barriers, Types, Personalize cancer vaccine
Abstract

Cancer continues to pose a significant global health burden, accounting for millions of cases and fatalities each year. Conventional therapeutic modalities, including surgery, chemotherapy, and radiotherapy, have yielded improved outcomes. However, their limitations and adverse effects underscore the imperative for novel therapeutic strategies, such as cancer vaccines. These vaccines, grounded in immunotherapeutic principles, have been shown to activate the immune system, thereby inducing tumor-specific responses. This mini-review explores the immunological foundations, classifications, and current limitations of cancer vaccines, with emphasis on peptide-based, recombinant, cell-based, and nucleic acid-based modalities. The manuscript also examines the significance of neoantigen identification and the tumor microenvironment in determining vaccine effectiveness. Notwithstanding noteworthy advancements, challenges such as immune evasion, low mutation rates, and an immunosuppressive tumor milieu endure. The effective incorporation of cancer vaccines into standard oncological care is contingent upon future research and clinical breakthroughs.

References

Abd-Aziz, N., & Poh, C. L. (2022). Development of Peptide-Based Vaccines for Cancer. Journal of Oncology, 2022, 1–17. https://doi.org/10.1155/2022/9749363

Atkin-Smith, G. K., Duan, M., Chen, W., & Poon, I. K. H. (2018). The induction and consequences of Influenza A virus-induced cell death. Cell Death & Disease, 9(10), 1002. https://doi.org/10.1038/s41419-018-1035-6

Belli, C., Trapani, D., Viale, G., D’Amico, P., Duso, B. A., Della Vigna, P., Orsi, F., & Curigliano, G. (2018). Targeting the microenvironment in solid tumors. Cancer Treatment Reviews, 65, 22–32. https://doi.org/10.1016/j.ctrv.2018.02.004

Cui, Z. (2005). DNA Vaccine (pp. 257–289). https://doi.org/10.1016/S0065-2660(05)54011-2

de Pinho Favaro, M. T., Atienza-Garriga, J., Martínez-Torró, C., Parladé, E., Vázquez, E., Corchero, J. L., Ferrer-Miralles, N., & Villaverde, A. (2022). Recombinant vaccines in 2022: a perspective from the cell factory. Microbial Cell Factories, 21(1), 203. https://doi.org/10.1186/s12934-022-01929-8

Del Prete, A., Salvi, V., Soriani, A., Laffranchi, M., Sozio, F., Bosisio, D., & Sozzani, S. (2023). Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cellular & Molecular Immunology, 20(5), 432–447. https://doi.org/10.1038/s41423-023-00990-6

Fan, T., Zhang, M., Yang, J., Zhu, Z., Cao, W., & Dong, C. (2023). Therapeutic cancer vaccines: advancements, challenges and prospects. Signal Transduction and Targeted Therapy, 8(1), 450. https://doi.org/10.1038/s41392-023-01674-3

Fan, Y., Bai, T., Tian, Y., Zhou, B., Wang, Y., & Yang, L. (2021). H2O2-Inactivated Salmonella typhimurium RE88 Strain as a New Cancer Vaccine Carrier: Evaluation in a Mouse Model of Cancer. Drug Design, Development and Therapy, Volume 15, 209–222. https://doi.org/10.2147/DDDT.S282660

Jorritsma, S. H. T., Gowans, E. J., Grubor-Bauk, B., & Wijesundara, D. K. (2016). Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines. Vaccine, 34(46), 5488–5494. https://doi.org/10.1016/j.vaccine.2016.09.062

Kaczmarek, M., Poznańska, J., Fechner, F., Michalska, N., Paszkowska, S., Napierała, A., & Mackiewicz, A. (2023). Cancer Vaccine Therapeutics: Limitations and Effectiveness—A Literature Review. Cells, 12(17), 2159. https://doi.org/10.3390/cells12172159

Katakam, A. K., Brightbill, H., Franci, C., Kung, C., Nunez, V., Jones, C., Peng, I., Jeet, S., Wu, L. C., Mellman, I., Delamarre, L., & Austin, C. D. (2015). Dendritic cells require NIK for CD40-dependent cross-priming of CD8+ T cells. Proceedings of the National Academy of Sciences, 112(47), 14664–14669. https://doi.org/10.1073/pnas.1520627112

Keenan, B. P., & Jaffee, E. M. (2012). Whole Cell Vaccines—Past Progress and Future Strategies. Seminars in Oncology, 39(3), 276–286. https://doi.org/10.1053/j.seminoncol.2012.02.007

Laumont, C. M., & Perreault, C. (2018). Exploiting non-canonical translation to identify new targets for T cell-based cancer immunotherapy. Cellular and Molecular Life Sciences, 75(4), 607–621. https://doi.org/10.1007/s00018-017-2628-4

Lauring, A. S., Jones, J. O., & Andino, R. (2010). Rationalizing the development of live attenuated virus vaccines. Nature Biotechnology, 28(6), 573–579. https://doi.org/10.1038/nbt.1635

Liang, F., Lindgren, G., Lin, A., Thompson, E. A., Ols, S., Röhss, J., John, S., Hassett, K., Yuzhakov, O., Bahl, K., Brito, L. A., Salter, H., Ciaramella, G., & Loré, K. (2017). Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques. Molecular Therapy, 25(12), 2635–2647. https://doi.org/10.1016/j.ymthe.2017.08.006

Liu, J., Fu, M., Wang, M., Wan, D., Wei, Y., & Wei, X. (2022). Cancer vaccines as promising immuno-therapeutics: platforms and current progress. Journal of Hematology & Oncology, 15(1), 28. https://doi.org/10.1186/s13045-022-01247-x

Lopes, A., Vandermeulen, G., & Préat, V. (2019). Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. Journal of Experimental & Clinical Cancer Research, 38(1), 146. https://doi.org/10.1186/s13046-019-1154-7

Maman, S., & Witz, I. P. (2018). A history of exploring cancer in context. Nature Reviews Cancer, 18(6), 359–376. https://doi.org/10.1038/s41568-018-0006-7

Manh, T. V., Alexandre, Y., Baranek, T., Crozat, K., & Dalod, M. (2013). Plasmacytoid, conventional, and monocyte‐derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation. European Journal of Immunology, 43(7), 1706–1715. https://doi.org/10.1002/eji.201243106

Mayer, R. L., & Impens, F. (2021). Immunopeptidomics for next-generation bacterial vaccine development. Trends in Microbiology, 29(11), 1034–1045. https://doi.org/10.1016/j.tim.2021.04.010

Mendonça, S. A., Lorincz, R., Boucher, P., & Curiel, D. T. (2021). Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. Npj Vaccines, 6(1), 97. https://doi.org/10.1038/s41541-021-00356-x

Mizukoshi, E., Nakagawa, H., Tamai, T., Kitahara, M., Fushimi, K., Nio, K., Terashima, T., Iida, N., Arai, K., Yamashita, T., Yamashita, T., Sakai, Y., Honda, M., & Kaneko, S. (2022). Peptide vaccine-treated, long-term surviving cancer patients harbor self-renewing tumor-specific CD8+ T cells. Nature Communications, 13(1), 3123. https://doi.org/10.1038/s41467-022-30861-z

MOREIN, B., HELENIUS, A., SIMONS, K., PETTERSSON, R., KÄÄRIÄINEN, L., & SCHIRRMACHER, V. (1978). Effective subunit vaccines against an enveloped animal virus. Nature, 276(5689), 715–718. https://doi.org/10.1038/276715a0

Murphy, T. L., & Murphy, K. M. (2022). Dendritic cells in cancer immunology. Cellular & Molecular Immunology, 19(1), 3–13. https://doi.org/10.1038/s41423-021-00741-5

Ni, L. (2023). Advances in mRNA-Based Cancer Vaccines. Vaccines, 11(10), 1599. https://doi.org/10.3390/vaccines11101599

Pardoll, D. M. (1998). Cancer vaccines. Nature Medicine, 4(S5), 525–531. https://doi.org/10.1038/nm0598supp-525

Pishesha, N., Harmand, T. J., Rothlauf, P. W., Praest, P., Alexander, R. K., van den Doel, R., Liebeskind, M. J., Vakaki, M. A., McCaul, N., Wijne, C., Verhaar, E., Pinney, W., Heston, H., Bloyet, L.-M., Pontelli, M. C., Ilagan, Ma. X. G., Jan Lebbink, R., Buchser, W. J., Wiertz, E. J. H. J., … Ploegh, H. L. (2021). A class II MHC-targeted vaccine elicits immunity against SARS-CoV-2 and its variants. Proceedings of the National Academy of Sciences, 118(44). https://doi.org/10.1073/pnas.2116147118

Pranchevicius, M.-C. S., & Vieira, T. R. (2013). Production of recombinant immunotherapeutics for anticancer treatment. Bioengineered, 4(5), 305–312. https://doi.org/10.4161/bioe.24666

Ragothaman, M., & Yoo, S. Y. (2023). Engineered Phage-Based Cancer Vaccines: Current Advances and Future Directions. Vaccines, 11(5), 919. https://doi.org/10.3390/vaccines11050919

Rojas, L. A., Sethna, Z., Soares, K. C., Olcese, C., Pang, N., Patterson, E., Lihm, J., Ceglia, N., Guasp, P., Chu, A., Yu, R., Chandra, A. K., Waters, T., Ruan, J., Amisaki, M., Zebboudj, A., Odgerel, Z., Payne, G., Derhovanessian, E., … Balachandran, V. P. (2023). Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature, 618(7963), 144–150. https://doi.org/10.1038/s41586-023-06063-y

Roma-Rodrigues, C., Mendes, R., Baptista, P. V., & Fernandes, A. R. (2019). Targeting Tumor Microenvironment for Cancer Therapy. International Journal of Molecular Sciences, 20(4), 840. https://doi.org/10.3390/ijms20040840

Sanders, B., Koldijk, M., & Schuitemaker, H. (2015). Inactivated Viral Vaccines. In Vaccine Analysis: Strategies, Principles, and Control (pp. 45–80). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-45024-6_2

Sheikhlary, S., Lopez, D. H., Moghimi, S., & Sun, B. (2024). Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules, 14(4), 503. https://doi.org/10.3390/biom14040503

Sobhani, N., Scaggiante, B., Morris, R., Chai, D., Catalano, M., Tardiel-Cyril, D. R., Neeli, P., Roviello, G., Mondani, G., & Li, Y. (2022). Therapeutic cancer vaccines: From biological mechanisms and engineering to ongoing clinical trials. Cancer Treatment Reviews, 109, 102429. https://doi.org/10.1016/j.ctrv.2022.102429

Srivastava, S., Singh, D., Verma, S. K., Pandey, M., Sharma, A., Pandey, H., & Mishra, A. (2024). Recent advancements in cancer vaccines: A systematic review. Vacunas, 25(1), 97–108. https://doi.org/10.1016/j.vacun.2023.10.005

Stevenson, F. K., Ottensmeier, C. H., Johnson, P., Zhu, D., Buchan, S. L., McCann, K. J., Roddick, J. S., King, A. T., McNicholl, F., Savelyeva, N., & Rice, J. (2004). DNA vaccines to attack cancer. Proceedings of the National Academy of Sciences, 101(suppl_2), 14646–14652. https://doi.org/10.1073/pnas.0404896101

Toussaint, B., Chauchet, X., Wang, Y., Polack, B., & Gouëllec, A. Le. (2013). Live-attenuated bacteria as a cancer vaccine vector. Expert Review of Vaccines, 12(10), 1139–1154. https://doi.org/10.1586/14760584.2013.836914

Travieso, T., Li, J., Mahesh, S., Mello, J. D. F. R. E., & Blasi, M. (2022). The use of viral vectors in vaccine development. Npj Vaccines, 7(1), 75. https://doi.org/10.1038/s41541-022-00503-y

Vedenko, A., Panara, K., Goldstein, G., Ramasamy, R., & Arora, H. (2020). Tumor Microenvironment and Nitric Oxide: Concepts and Mechanisms (pp. 143–158). https://doi.org/10.1007/978-3-030-50224-9_10

Wang, Y., Zhang, R., Tang, L., & Yang, L. (2022). Nonviral Delivery Systems of mRNA Vaccines for Cancer Gene Therapy. Pharmaceutics, 14(3), 512. https://doi.org/10.3390/pharmaceutics14030512

Yoo, J.-S., Sasaki, M., Cho, S. X., Kasuga, Y., Zhu, B., Ouda, R., Orba, Y., de Figueiredo, P., Sawa, H., & Kobayashi, K. S. (2021). SARS-CoV-2 inhibits induction of the MHC class I pathway by targeting the STAT1-IRF1-NLRC5 axis. Nature Communications, 12(1), 6602. https://doi.org/10.1038/s41467-021-26910-8

Cover Image
Downloads
Published
2025-04-18
Section
Review Article
License

Copyright (c) 2025 Startsev V. Yu

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How to Cite

Startsev V. Yu. (2025). Cancer Vaccines: Breakthroughs, Challenges, and Future Perspectives in Oncology. Middle Eastern Cancer and Oncology Journal, 1(2), 8-12. https://doi.org/10.61706/MECOJ160132