The Role of the Tumor Microenvironment in Tumor Progression and Response to Therapy

Main Article Content

Watheq Mohammed AL-Jewari
Rafal Salim

Abstract

The tumor microenvironment (TME) has emerged as a significant focus in cancer therapy due to its pivotal role in controlling tumor progression and shaping responses to conventional treatments. This review explores recent innovations in therapies targeting TME, including immunotherapies, antiangiogenic agents, and treatments aimed at cancer-associated fibroblasts and the extracellular matrix. These interventions, which are either approved for clinical use or undergoing clinical trials, underscore TME’s influence on cancer treatment outcomes and patient survival. The identification of effective therapeutic strategies to target TME is imperative for mitigating immunosuppression, reactivating T cell functions, and enhancing immune system efficacy. Notwithstanding significant advancements, key gaps persist in comprehending the intricate interactions within TME and translating experimental findings into clinical success. Future research should prioritize elucidating these gaps to enhance therapeutic efficacy and patient outcomes.

Article Details

How to Cite
Al-jewari, W., & Salim, R. (2025). The Role of the Tumor Microenvironment in Tumor Progression and Response to Therapy. Middle Eastern Cancer and Oncology Journal , 1(1), 9–14. https://doi.org/10.61706/MECOJ16002
Section
Review Article

References

Aghanejad, A., Bonab, S. F., Sepehri, M., Haghighi, F. S., Tarighatnia, A., Kreiter, C., Nader, N. D., & Tohidkia, M. R. (2022). A review on targeting tumor microenvironment: The main paradigm shift in the mAb-based immunotherapy of solid tumors. International Journal of Biological Macromolecules, 207, 592–610. https://doi.org/10.1016/j.ijbiomac.2022.03.057

Bejarano, L., Jordāo, M. J. C., & Joyce, J. A. (2021). Therapeutic Targeting of the Tumor Microenvironment. Cancer Discovery, 11(4), 933–959. https://doi.org/10.1158/2159-8290.CD-20-1808

Bożyk, A., Wojas-Krawczyk, K., Krawczyk, P., & Milanowski, J. (2022). Tumor Microenvironment—A Short Review of Cellular and Interaction Diversity. Biology, 11(6), 929. https://doi.org/10.3390/biology11060929

Chauvin, J.-M., & Zarour, H. M. (2020). TIGIT in cancer immunotherapy. Journal for ImmunoTherapy of Cancer, 8(2), e000957. https://doi.org/10.1136/jitc-2020-000957

Chu, X., Tian, W., Wang, Z., Zhang, J., & Zhou, R. (2023). Co-inhibition of TIGIT and PD-1/PD-L1 in Cancer Immunotherapy: Mechanisms and Clinical Trials. Molecular Cancer, 22(1), 93. https://doi.org/10.1186/s12943-023-01800-3

Cueto, F. J., & Sancho, D. (2021). The Flt3L/Flt3 Axis in Dendritic Cell Biology and Cancer Immunotherapy. Cancers, 13(7), 1525. https://doi.org/10.3390/cancers13071525

De Silva, P., Aiello, M., Gu‐Trantien, C., Migliori, E., Willard‐Gallo, K., & Solinas, C. (2021). Targeting CTLA-4 in cancer: Is it the ideal companion for PD-1 blockade immunotherapy combinations? International Journal of Cancer, 149(1), 31–41. https://doi.org/10.1002/ijc.33415

Djureinovic, D., Wang, M., & Kluger, H. M. (2021). Agonistic CD40 Antibodies in Cancer Treatment. Cancers, 13(6), 1302. https://doi.org/10.3390/cancers13061302

Farc, O., & Cristea, V. (2020). An overview of the tumor microenvironment, from cells to complex networks (Review). Experimental and Therapeutic Medicine, 21(1), 96. https://doi.org/10.3892/etm.2020.9528

Favre-Felix, N., Martin, M., Maraskovsky, E., Fromentin, A., Moutet, M., Solary, E., Martin, F., & Bonnotte, B. (2000). Flt3 ligand lessens the growth of tumors obtained after colon cancer cell injection in rats but does not restore tumor-suppressed dendritic cell function. International Journal of Cancer, 86(6), 827–834. https://doi.org/10.1002/(sici)1097-0215(20000615)86:6<827::aid-ijc11>3.0.co;2-r

Hao, Q., Vadgama, J. V., & Wang, P. (2020). CCL2/CCR2 signaling in cancer pathogenesis. Cell Communication and Signaling, 18(1), 82. https://doi.org/10.1186/s12964-020-00589-8

Huang, L., Xu, X., & Hao, Y. (2014). The possible mechanisms of tumor progression via CSF-1/CSF-1R pathway activation. Romanian Journal of Morphology and Embryology = Revue Roumaine de Morphologie et Embryologie, 55(2 Suppl), 501–506.

Huang, Y., Ma, Y., Gao, P., & Yao, Z. (2017). Targeting CD47: the achievements and concerns of current studies on cancer immunotherapy. Journal of Thoracic Disease, 9(2), E168–E174. https://doi.org/10.21037/jtd.2017.02.30

Huo, J.-L., Wang, Y.-T., Fu, W.-J., Lu, N., & Liu, Z.-S. (2022). The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.956090

Jin, M.-Z., & Jin, W.-L. (2020). The updated landscape of tumor microenvironment and drug repurposing. Signal Transduction and Targeted Therapy, 5(1), 166. https://doi.org/10.1038/s41392-020-00280-x

Kramer, E. D., & Abrams, S. I. (2020). Granulocytic Myeloid-Derived Suppressor Cells as Negative Regulators of Anticancer Immunity. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01963

Lu, Q., Chen, X., Wang, S., Lu, Y., Yang, C., & Jiang, G. (2020). Potential New Cancer Immunotherapy: Anti-CD47-SIRPα Antibodies. OncoTargets and Therapy, Volume 13, 9323–9331. https://doi.org/10.2147/OTT.S249822

Monjazeb, A. M., Schalper, K. A., Villarroel-Espindola, F., Nguyen, A., Shiao, S. L., & Young, K. (2020). Effects of Radiation on the Tumor Microenvironment. Seminars in Radiation Oncology, 30(2), 145–157. https://doi.org/10.1016/j.semradonc.2019.12.004

Ravensbergen, C. J., Kuruc, M., Polack, M., Crobach, S., Putter, H., Gelderblom, H., Roy, D., Tollenaar, R. A. E. M., & Mesker, W. E. (2021). The Stroma Liquid Biopsy Panel Contains a Stromal-Epithelial Gene Signature Ratio That Is Associated with the Histologic Tumor-Stroma Ratio and Predicts Survival in Colon Cancer. Cancers, 14(1), 163. https://doi.org/10.3390/cancers14010163

Razi, S., Haghparast, A., Chodari Khameneh, S., Ebrahimi Sadrabadi, A., Aziziyan, F., Bakhtiyari, M., Nabi-Afjadi, M., Tarhriz, V., Jalili, A., & Zalpoor, H. (2023). The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Communication and Signaling, 21(1), 143. https://doi.org/10.1186/s12964-023-01129-w

Rousseau, A., Parisi, C., & Barlesi, F. (2023). Anti-TIGIT therapies for solid tumors: a systematic review. ESMO Open, 8(2), 101184. https://doi.org/10.1016/j.esmoop.2023.101184

Salomon, R., & Dahan, R. (2022). Next Generation CD40 Agonistic Antibodies for Cancer Immunotherapy. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.940674

Seidel, J. A., Otsuka, A., & Kabashima, K. (2018). Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Frontiers in Oncology, 8. https://doi.org/10.3389/fonc.2018.00086

Sobhani, N., Tardiel-Cyril, D. R., Davtyan, A., Generali, D., Roudi, R., & Li, Y. (2021). CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers, 13(6), 1440. https://doi.org/10.3390/cancers13061440

Tiwari, A., Trivedi, R., & Lin, S.-Y. (2022). Tumor microenvironment: barrier or opportunity towards effective cancer therapy. Journal of Biomedical Science, 29(1), 83. https://doi.org/10.1186/s12929-022-00866-3

Tsai, M.-J., Chang, W.-A., Huang, M.-S., & Kuo, P.-L. (2014). Tumor Microenvironment: A New Treatment Target for Cancer. ISRN Biochemistry, 2014, 1–8. https://doi.org/10.1155/2014/351959

Veglia, F., Sanseviero, E., & Gabrilovich, D. I. (2021). Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nature Reviews Immunology, 21(8), 485–498. https://doi.org/10.1038/s41577-020-00490-y

Wang, M., Zhao, J., Zhang, L., Wei, F., Lian, Y., Wu, Y., Gong, Z., Zhang, S., Zhou, J., Cao, K., Li, X., Xiong, W., Li, G., Zeng, Z., & Guo, C. (2017). Role of tumor microenvironment in tumorigenesis. Journal of Cancer, 8(5), 761–773. https://doi.org/10.7150/jca.17648

Wang, Q., Shao, X., Zhang, Y., Zhu, M., Wang, F. X. C., Mu, J., Li, J., Yao, H., & Chen, K. (2023). Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Medicine, 12(10), 11149–11165. https://doi.org/10.1002/cam4.5698