Hyperspectral Images Technique in Mapping and Quantifying Gypsum Case Study: Jayroud District

Nasser Tarraf Ibrahem

DOI: https://doi.org/10.61706/sccee1201123

Keywords: Hyperspectral Images, Detection, Quantifying, Resource Sustainabilit, Gypsum


Abstract

As the spectral data of the space image increases, the amount of information derived by processing per unit terrestrial area is amplified. A hyperspectral image is capable of mapping the classified features in accordance with defined objectives, and of providing a description of each objective in quantitative terms. A model for mapping gypsum quantity using spectral libraries and the SAM technique on a hyperspectral image was implemented. The distribution of gypsum was mapped for areas exceeding 50% (per unit area), covering 1188 ha, and exceeding 70% (per unit area), covering 932 ha, and exceeding 85% (per unit area), covering 395 ha, along the study area of Jayroud, Damascus countryside. The model performance with respect to static indicators was as follows: the accuracy assessment value was -11.5, the root mean square error (RMSE) was 10.25, and the coefficient of determination (R²) was 0.94 for gypsum estimation in comparison with field observations. Maps of gypsum quantification and distribution are instrumental in the optimal investment planning and effective sustainable management of this resource.


References

Al-Allan, N., Al-Abdalla, M., & Ibrahem, N. (2013). Using Spectral Angle Mapper Technique (SAM) on Hyperspectral Images to Determine the Area and Location of Some Objects. Damascus University Journal, 29(1), 405–417.

Arvelyna, Y., Shuichi, M., Atsushi, M., Nguno, A., Mhopjeni, K., Muyongo, A., Sibeso, M., & Muvangua, E. (2011). Hyperspectral mapping for rock and alteration mineral with Spectral Angle Mapping and Neural Network classification method: Study case in Warmbad district, south of Namibia. 2011 IEEE International Geoscience and Remote Sensing Symposium, 1752–1754. https://doi.org/10.1109/IGARSS.2011.6049458

Bharti, R., Kalimuthu, R., & Ramakrishnan, D. (2015). Spectral pathways for exploration of secondary uranium: An investigation in the desertic tracts of Rajasthan and Gujarat, India. Advances in Space Research, 56(8), 1613–1626. https://doi.org/10.1016/j.asr.2015.07.015

Bishop, C. A., Liu, J. G., & Mason, P. J. (2011). Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China. International Journal of Remote Sensing, 32(9), 2409–2426. https://doi.org/10.1080/01431161003698336

Black, M., Riley, T. R., Ferrier, G., Fleming, A. H., & Fretwell, P. T. (2016). Automated lithological mapping using airborne hyperspectral thermal infrared data: A case study from Anchorage Island, Antarctica. Remote Sensing of Environment, 176, 225–241. https://doi.org/10.1016/j.rse.2016.01.022

Chang, C. (2003). Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Springer.

Chatrenor, M., Landi, A., Ahmad, F. F., Noroozi, A., & Bahrami, H. A. (2020). Application of hyperspectral images in Quantification of soil gypsum in center areas of Khuzestan province prone to dust generation. Applied Soil Research, 8(3), 1–13.

Chattoraj, S. L., Prasad, G., Sharma, R. U., Champati ray, P. K., van der Meer, F. D., Guha, A., & Pour, A. B. (2020). Integration of remote sensing, gravity and geochemical data for exploration of Cu-mineralization in Alwar basin, Rajasthan, India. International Journal of Applied Earth Observation and Geoinformation, 91, 102162. https://doi.org/10.1016/j.jag.2020.102162

Dodge, Y. (2008). The Concise Encyclopedia of Statistics. Springer New York. https://doi.org/10.1007/978-0-387-32833-1

Dutkiewicz, A., Lewis, M., & Ostendorf, B. (2009). Evaluation and comparison of hyperspectral imagery for mapping surface symptoms of dryland salinity. International Journal of Remote Sensing, 30(3), 693–719. https://doi.org/10.1080/01431160802392612

Ehrenfeld, A., Egaña, Á. F., Santibañez-Leal, F., Garrido, F., Ojeda, M., Townley, B., & Navarro, F. (2023). HIDSAG: Hyperspectral Image Database for Supervised Analysis in Geometallurgy. Scientific Data, 10(1), 164. https://doi.org/10.1038/s41597-023-02061-x

Fasnacht, L., Vogt, M.-L., Renard, P., & Brunner, P. (2019). A 2D hyperspectral library of mineral reflectance, from 900 to 2500 nm. Scientific Data volume 6, Article number: 268.

Felde G W, Anderson G P, Cooley T W, Matthew M W, Adler-Golden S M, Berk A and Lee J (2003). Analysis of HyperionScientific Data, 6(1), 268. https://doi.org/10.1038/s41597-019-0261-9

Feng, J., Rogge, D., & Rivard, B. (2018). Comparison of lithological mapping results from airborne hyperspectral VNIR-SWIR, LWIR and combined data. International Journal of Applied Earth Observation and Geoinformation, 64, 340–353. https://doi.org/10.1016/j.jag.2017.03.003

Gan, F. P., & Wang, R. S. (2007). The application of the Hyper spectral imaging technique to geological investigation. Remote Sensing for Natural Resources, 4.

Gao, B.-C., Montes, M. J., Davis, C. O., & Goetz, A. F. H. (2009). Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sensing of Environment, 113, S17–S24. https://doi.org/10.1016/j.rse.2007.12.015

Gleeson, D. F., Pappalardo, R. T., Grasby, S. E., Anderson, M. S., Beauchamp, B., Castaño, R., Chien, S. A., Doggett, T., Mandrake, L., & Wagstaff, K. L. (2010). Characterization of a sulfur-rich Arctic spring site and field analog to Europa using hyperspectral data. Remote Sensing of Environment, 114(6), 1297–1311. https://doi.org/10.1016/j.rse.2010.01.011

Habashi, J., Mohammady Oskouei, M., Jamshid Moghadam, H., & Beiranvand Pour, A. (2024). Optimizing alteration mineral detection: A fusion of multispectral and hyperspectral remote sensing techniques in the Sar-e-Chah-e Shur, Iran. Remote Sensing Applications: Society and Environment, 35, 101249. https://doi.org/10.1016/j.rsase.2024.101249

Herrero, J., Artieda, O., & Hudnall, W. H. (2009). Gypsum, a Tricky Material. Soil Science Society of America Journal, 73(6), 1757–1763. https://doi.org/10.2136/sssaj2008.0224

Ibrahem N. (2015). Mapping and quantifying basaltic exposures using Hyperspectral images. Remote Sensing Journal, 27, 56–76.

Kruse, F. A. (2012). Mapping surface mineralogy using imaging spectrometry. Geomorphology, 137(1), 41–56. https://doi.org/10.1016/j.geomorph.2010.09.032

Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., & Goetz, A. F. H. (1993). The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2–3), 145–163. https://doi.org/10.1016/0034-4257(93)90013-N

Laakso, K., Rivard, B., Peter, J. M., White, H. P., Maloley, M., Harris, J., & Rogge, D. (2015). Application of Airborne, Laboratory, and Field Hyperspectral Methods to Mineral Exploration in the Canadian Arctic: Recognition and Characterization of Volcanogenic Massive Sulfide-Associated Hydrothermal Alteration in the Izok Lake Deposit Area, Nunavut, Canada. Economic Geology, 110(4), 925–941. https://doi.org/10.2113/econgeo.110.4.925

Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., & Benediktsson, J. A. (2019). Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6690–6709. https://doi.org/10.1109/TGRS.2019.2907932

Liu, D. C., Tian, F., Qiu, J. T., Ye, F. W., Yan, B. K., Sun, Y., & Wang, Z. T. (2017). Application of hyper spectral remote sensing in solid ore exploration in the Liuyuan-Fangshankou area. Acta Geol. Sin, 12(91), 2781–2795.

Longhenry, R. (2020). Earth Observing 1 (EO-1). Earth Resources Observation and Science (EROS) Center.

Matteoli, S., Diani, M., & Corsini, G. (2018). Automatic Target Recognition Within Anomalous Regions of Interest in Hyperspectral Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(4), 1056–1069. https://doi.org/10.1109/JSTARS.2018.2810336

Milewski, R., Chabrillat, S., Brell, M., Schleicher, A. M., & Guanter, L. (2019). Assessment of the 1.75 μm absorption feature for gypsum estimation using laboratory, air- and spaceborne hyperspectral sensors. International Journal of Applied Earth Observation and Geoinformation, 77, 69–83. https://doi.org/10.1016/j.jag.2018.12.012

Pearlman, J. S., Barry, P. S., Segal, C. C., Shepanski, J., Beiso, D., & Carman, S. L. (2003). Hyperion, a space-based imaging spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1160–1173. https://doi.org/10.1109/TGRS.2003.815018

Satpathy, R., Singh, V. K., Parveen, R., & Jeyaseelan, A. T. (2010). Spectral Analysis of Hyperion Data for Mapping the Spatial Variation of in a Part of Latehar & Gumla District, Jharkhand. Journal of Geographic Information System, 02(04), 210–214. https://doi.org/10.4236/jgis.2010.24029

Schaepman, M. E., Ustin, S. L., Plaza, A. J., Painter, T. H., Verrelst, J., & Liang, S. (2009). Earth system science related imaging spectroscopy—An assessment. Remote Sensing of Environment, 113, S123–S137. https://doi.org/10.1016/j.rse.2009.03.001

Shrestha, D. P., Margate, D. E., Meer, F. van der, & Anh, H. V. (2005). Analysis and classification of hyperspectral data for mapping land degradation: An application in southern Spain. International Journal of Applied Earth Observation and Geoinformation, 7(2), 85–96. https://doi.org/10.1016/j.jag.2005.01.001

Smith, R. B. (2012). Introduction to Hyperspectral Imaging. MicroImages, Inc. https://www.microimages.com/documentation/Tutorials/hyprspec.pdf

Sneha, & Kaul, A. (2022). Hyperspectral imaging and target detection algorithms: a review. Multimedia Tools and Applications, 81(30), 44141–44206. https://doi.org/10.1007/s11042-022-13235-x

Sowmya, V., Soman, K. P., & Hassaballah, M. (2019). Hyperspectral Image: Fundamentals and Advances (pp. 401–424). https://doi.org/10.1007/978-3-030-03000-1_16

Thompson, D. R., Bornstein, B. J., Chien, S. A., Schaffer, S., Tran, D., Bue, B. D., Castano, R., Gleeson, D. F., & Noell, A. (2013). Autonomous Spectral Discovery and Mapping Onboard the EO-1 Spacecraft. IEEE Transactions on Geoscience and Remote Sensing, 51(6), 3567–3579. https://doi.org/10.1109/TGRS.2012.2226040

van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A., Hecker, C. A., Bakker, W. H., Noomen, M. F., van der Meijde, M., Carranza, E. J. M., Smeth, J. B. de, & Woldai, T. (2012). Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14(1), 112–128. https://doi.org/10.1016/j.jag.2011.08.002

Vasile, M., Walker, L., Campbell, A., Marto, S., Murray, P., Marshall, S., & Savitski, V. (2024). Space object identification and classification from hyperspectral material analysis. Scientific Reports, 14(1), 1570. https://doi.org/10.1038/s41598-024-51659-7

Wan, Y., Fan, Y., & Jin, M. (2021). Application of hyperspectral remote sensing for supplementary investigation of polymetallic deposits in Huaniushan ore region, northwestern China. Scientific Reports, 11(1), 440. https://doi.org/10.1038/s41598-020-79864-0

Wikipedia contributors. (2024). Gypsum. Wikipedia. https://en.wikipedia.org/wiki/Gypsum

Xu, Z., Fang, G., & Wang, S. (2010). Molecularly imprinted solid phase extraction coupled to high-performance liquid chromatography for determination of trace dichlorvos residues in vegetables. Food Chemistry, 119(2), 845–850. https://doi.org/10.1016/j.foodchem.2009.08.047

Yoon, S.-C., & Park, B. (2015). Hyperspectral Image Processing Methods (pp. 81–101). https://doi.org/10.1007/978-1-4939-2836-1_4

Yu, H., Kong, B., Wang, Q., Liu, X., & Liu, X. (2020). Hyperspectral remote sensing applications in soil: a review. In Hyperspectral Remote Sensing (pp. 269–291). Elsevier. https://doi.org/10.1016/B978-0-08-102894-0.00011-5

Zhang, Z. C., Zhang, X. J., Hu, D. G., & Gao, W. L. (2011). Application of Hyperspectral Remote Sensing on Mineral Exploration in Dongdatan District of East Kunlun,Qinghai Province. Geoscience, 25(4), 760–767. https://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201104018.