Steps For Civil, Constructions and Environmental Engineering (SCCEE) ::
ISSN: 3005-8198 (online) / 3005-818X (print)

Volume 2, Issue 4 (January — March 2024), pp: 22-34

Research Article

Hyperspectral Images Technique in Mapping and Quantifying
Gypsum
Case Study: Jayroud District

Nasser Tarraf Ibrahem

General Organization of Remote Sensing (GORS), Damascus, Syria.

E-mail: dr.nasseribrahem@gmail.com

Received: 15 January 2024 | Revised: 27 February 2024 | Accepted: 12 March 2024 | Published: 30 March 2024

Abstract

As the spectral data of the space image increases, the amount of information derived by processing per
unit terrestrial area is amplified. A hyperspectral image is capable of mapping the classified features
in accordance with defined objectives, and of providing a description of each objective in quantitative
terms. A model for mapping gypsum quantity using spectral libraries and the SAM technique on a
hyperspectral image was implemented. The distribution of gypsum was mapped for areas exceeding
50% (per unit area), covering 1188 ha, and exceeding 70% (per unit area), covering 932 ha, and
exceeding 85% (per unit area), covering 395 ha, along the study area of Jayroud, Damascus
countryside. The model performance with respect to static indicators was as follows: the accuracy
assessment value was -11.5, the root mean square error (RMSE) was 10.25, and the coefficient of
determination (R?) was 0.94 for gypsum estimation in comparison with field observations. Maps of
gypsum quantification and distribution are instrumental in the optimal investment planning and
effective sustainable management of this resource.
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Introduction

As the spectral data of the space image increases,
the amount of information derived by processing per
unit terrestrial area also increases. At the initial stage of
the process, which involves mapping the classified
features into defined objectives and taxonomic
categories, the objective is merely to describe and
estimate the quantity of each of these objectives.
Hyperspectral images provide an enormous amount of
spectral data for all features present in the image.
However, hyperspectral image processing algorithms
and workflows are fundamentally different from those
used for multispectral images (Smith, 2012; Yoon &
Park, 2015).

The measurement of the spectral reflectance of the
objects under study across a wide spectral range and
with high spectral accuracy is regarded as one of the
most crucial techniques for classifying these objects and
determining the degree of similarity and dissimilarity
between them. In addition to determining the
percentage of participation of an element in a
compound, it is also possible to quantify the presence of
this characteristic per unit area (Ehrenfeld et al., 2023).
The spectral reflectance at each wavelength is regarded
as an outcome that reflects both the physical and
chemical attributes of the subject matter, facilitating the
expeditious identification of physical characteristics
that are not readily discernible and numerous chemical
properties that necessitate laboratory-based analyses
(Ehrenfeld et al., 2023; Smith, 2012; Sowmya et al.,
2019).

Hyperspectral remote sensing is the primary source
of information for mapping and exploring minerals
(Ehrenfeld et al., 2023; Gan & Wang, 2007; Kruse,
2012; Laakso et al., 2015; Schaepman et al., 2009;
Sneha & Kaul, 2022; van der Meer et al., 2012; Yu et
al., 2020). In addition, the original mineral was
identified as a polymetallic ore comprising gold, silver,
lead, and zinc (Wan et al., 2021). The mineral map also
included copper and iron (Habashi et al., 2024).
Furthermore, AL+OH minerals were detected (Satpathy
et al., 2010), and materials on the object were identified
(Vasile et al., 2024), basaltic exposures (Ibrahem N,
2015), gypsum (Chatrenor et al., 2020; Fasnacht et al.,
2019; Milewski et al., 2019), characterization of
different rocks and qualitative analysis to quantitative
recognition (Arvelyna et al., 2011; Xu et al., 2010).
Black et al. (2016) and Thompson (2013) have also
contributed to this field (Black et al., 2016; Thompson
et al., 2013). The exploration of solid minerals and oil
and gas (Bishop et al., 2011; Liu et al., 2017) are
additional areas of interest. The study of nutrients,
organic carbon, moisture, salinization, and soil texture
(Sowmya et al., 2019; Yu et al., 2020) represents
another important aspect of this research.
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Hyperspectral image techniques are employed for
a variety of purposes, including identification,
classification, categorization, assessment, and mapping.
Examples of such techniques include Support Vector
Machines (SVM) (Chatrenor et al., 2020; Gleeson et al.,
2010), Spectral Angle Mapper (SAM). (Al-Allan et al.,
2013; Bharti et al., 2015; Ibrahem N, 2015; Shrestha et
al., 2005; Wan et al., 2021) proposed the use of Spectral
Feature Fitting (SFF) (Sowmya et al., 2019), Match
Filtering (MF) (Wan et al., 2021), and Spectral Mixture
Analysis (SMA) (Dutkiewicz et al., 2009; Gleeson et
al., 2010) for hyperspectral image analysis. Other
relevant studies on target detection (Sneha & Kaul,
2022), minimum noise fraction transform (Wan et al.,
2021), recognition targets (Matteoli et al., 2018), by
Zhang et al. (2011) and Ibrahem (20 15. Chattoraj et al.
(2020), Feng et al. (2018), spectral libraries and expert
systems(Chattoraj et al., 2020; Feng et al., 2018;
Ibrahem N, 2015; Zhang et al., 2011), artificial neural
networks (Fasnacht et al., 2019; Li et al., 2019),
machine learning (Ehrenfeld et al., 2023; Li et al., 2019;
Vasile et al., 2024).

The majority of hyperspectral studies focusing on
gypsum have employed a variety of hyperspectral
techniques to identify and classify gypsum (Chatrenor
et al., 2020; Fasnacht et al., 2019). Additionally, some
studies have utilized hyperspectral remote sensing data
to predict gypsum content and assess absolute
quantification (Milewski et al., 2019). All hyperspectral
studies working on gypsum assessment require an
extensive training data set or rely on scene-dependent
selection of target spectra for the gypsum analysis.
Furthermore, they do not provide quantitative estimates
of gypsum.

Gypsum (hydrated calcium sulfate, CaSO4.2H-0)
is regarded as one of the most abundant raw materials
found in the Earth's crust. Gypsum is the most pervasive
sulfurous mineral in nature, occurring on the Earth's
surface or at depths reaching 350 meters. It is a widely
utilized building material and an important component
in the decorative industry. Additionally, gypsum is
utilized in agricultural, medical, and educational
contexts (Wikipedia contributors, 2024).

In this study, spectral gypsum models were
generated based on hyperspectral data within the
wavelength range of 350 to 2500 nanometers of gypsum
under five standard levels (50, 60, 70, 80, and 90%).
The application of spectral gypsum models and
hyperspectral imaging enabled the generation of maps
of gypsum percent (exceeding 50%, 70%, and 85%) for
the Jayroud region, situated to the northeast of
Damascus in Syria. These maps facilitate the planning
of optimal investment and sustainable resource
management.
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Methodology

The research methodology is based on the
flowchart architecture (Figure 1) and employs the
following materials and methods:

Data Acquisition

The study area is situated in the northeast region of
the city of Damascus. It is administratively affiliated
with the Jayroud region of the Damascus Governorate,
as illustrated in Figure 2.

The hyperspectral space image of Hyperion
comprises 242 spectral channels captured within the
wavelength range of 355-2577 nm, with a wavelength
range of 10-12 nm and a spatial resolution of 25 m. The
image utilized in this study is designated as
EO1H1730362004297110PE. The acronym PE denotes
the satellite EO1, which is designated Earth
Observation 1, the Hyperion sensor, the path number
173, and the row number 036. This image was captured
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in the year 2004, during the 297th day of the Julian
period, specifically on October 23, 2004. The "1" that
follows the "297" indicates that the Hyperion sensor is
operational. The second digit indicates that the ALI
sensor is active. The absence of a digit zero indicates
that the AC sensor is off. P is a code for the pointing
mode, and E is the code for the scene length (Pearlman
et al., 2003). Hyperion was designed by NASA as one
of the sensor systems on the Earth Observation (EO-1)
platform in 2001. Figure 3a depicts the hyperspectral
image of the study area in true colors, while Figure 3b
illustrates the spectral composition of this hyperspectral
image.

Multi-spectral images with a spatial resolution of
15 meters were obtained from the TM Landsat satellite.
These images were projected and mosaicked by control
points in GORS (General Organization of Remote
Sensing) in 2009. The resulting images are presented in
Figures 2 and 4.
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Figure 1. Flowchart of Research Methodology.
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Figure 2. Geographic Location of the Study Area on the Space Image of the Syria

a- in true color b-data synthesis

Figure 3. Hyperspectral Image of the Study Area
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Figure 4. TM Image of the Study Area

The topography is illustrated by a digital elevation
model (DEM) image (Figure 5) with a resolution of 30
meters (SRTM). The study area is situated at an average
altitude of 777415 meters above sea level.

Map of Rain-Stable Zones in Syria (Figure 6). The
study area is situated within the fifth rain stability zone,
with an annual rainfall of less than 150 mm. In arid and
semi-arid regions, the accumulation of the evaporite
mineral gypsum (Herrero et al., 2009) can have a
significant impact on soil and sedimentary processes.

The field spectral data were obtained using a
FieldSpec®Pro spectroradiometer (Figure 7) within the
spectral range of 350-2500 nm at a resolution of 1 nm
with 2150 spectral channels.

The geographical coordinates of field points are
determined by a Global Positioning System (GPS)
device of the Garmin etrex type (Figure 8).

Pre-Processing

Hyperspectral Image Corrections

The Radiometric Correction

One of the primary image acquisition processes is
radiometric correction and calibration (Chang, 2003;
Sneha & Kaul, 2022). A total of 242 distinct spectral
channels  were  collected, encompassing a
comprehensive spectrum from 355 to 2577 nanometers.
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The Level 1 radiometric product comprises a total of
242 bands, of which only 198 have been calibrated. The
calibrated channels for the visible-near infrared (VNIR)
range are 8-57, while the same range for the shortwave
infrared (SWIR) is 77-224. The rationale for not
calibrating all 242 channels primarily stems from the
detector's low responsivity. The uncalibrated bands are
set to zero on those channels. A total of 196 unique
channels are present (Longhenry, 2020), due to an
overlap between the VNIR and SWIR focal planes. This
overlap is observed between the VNIR band 56 (915.23
nm) and 57 (925.41 nm) and the SWIR band 77 (912.45
nm) and 78 (922.54 nm). In the experiment, all
uncalibrated bands and bands 77 and 78 are removed
prior to further processing. The digital values of the
Level 1 product are 16-bit radiances and are stored as a
16-bit signed integer. Scaling factors of 80 and 40,
respectively, are applied to the SWIR and VNIR bands.
The units are W/m? SRm (Longhenry, 2020).

VNIR L = Digital Number / 40
SWIR L = Digital Number / 80
The Atmospheric Correction

Due to the absorption and scattering of solar
radiation by atmospheric gases and aerosols along the
path between the sun and the sensor in the visible and
near-infrared spectral regions, the hyperspectral
imaging data is influenced by atmospheric effects. In
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order to employ hyperspectral imaging data for
quantitative remote sensing of land surfaces, it is
necessary to remove the atmospheric effects. (Gao et al.,
2009; Sneha & Kaul, 2022).

The FLAASH (Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes) technique is
employed for the purpose of atmospheric correction.
FLAASH is designed to eliminate atmospheric effects
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caused by molecular and particulate scattering and
absorption from the radiance at the sensor and to obtain
reflectance at the surface. The FLAASH atmospheric
correction code, which derives its physics-based
algorithm from the MODTRAN4 radiative transfer
code (Felde et al., 2003), is capable of correcting for
atmospheric effects. Figure 9 illustrates the spectral
profile of a pixel before (Figure 9a) and after (Figure
9b) atmospheric correction.
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Figure 5. DEM Image of the Study Area
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Figure 6. Map of Rain Stable Zones for the Study Area
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Figure 8. Garmin Etrex GPS device
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Figure 9. Spectral Profile of Pixel: Before (a) and After (b) Atmospheric Correction
The Geometric Correction space image before (Figure 10a) and after (Figure 10b)

The hyperspectral space image was corrected geometric correction.

geometrically (Chang, 2003) in accordance with the TM Field Spectral Data Formatting

LANDSAT image projected for Syria, which was . . .
prepared by GORS (Figure 1). Figure 10 illustrates the On October 10, 2019, radiometric spectral readings
for gypsum percent at five levels (50, 60, 70, 80, and

]
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90%) were recorded using the radiometric RS3
program. The spectral data records were displayed and
analyzed using the ViewSpecPro program. The spectral
reflectance data were formatted using the Excel
program to facilitate the visualization of the spectral
signature (within the range of 350 to 2500 nm) of
gypsum at the five specified percent levels (Figure 11).

The spectral signature of gypsum exhibited a
curved dependence on wavelength and on the percent of
gypsum in the scene reflectance (unit area). As the
percentage of gypsum increased, the spectral
reflectance value exhibited a positive correlation in the
range of 350-1850 nm, while displaying a negative
correlation in the range of 1900-2500 nm. As the
percentage of gypsum in a given sample increase, the
reflectance values of the sample's spectra exhibit an
overall increase within the range of 350-1850 nm.
There was a significant discrepancy between the
recorded spectra reflectance values as the gypsum
percent varied in the ranges of 8001350 nm and 1600—
1720 nm. This finding aligns with the observations
made by Ehrenfeld et al. (2023). It is evident that
supervised analysis using spectral data necessitates a
comprehensive understanding of the response variables
and a substantial number of spectral data points.

Processing

The objective is to program the spectral signature
of gypsum in the form of spectral libraries. The
implementation of spectral libraries in the corrected
hyperspectral image is achieved through the utilization
of the Spectral Angle Mapper (SAM) technique, which

Tt

e
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facilitates the mapping of gypsum percent. The Spectral
Angle Mapper (SAM) is a method that relies on a
comparison between the target spectrum and a reference
spectrum (which is determined in a laboratory setting)
and the target spectrum in the corrected image. In the
classification process, this method employs a
stereoscopic angle (n dimensions) to align the pixels
with the reference spectrum. This function determines
the spectral similarity between two spectra by
calculating the angle between the two spectra and
treating them as rays in a space whose dimensions are
equal to the number of spectral channels. Each ray has
a specific length and direction, with the length of the
beam representing the brightness in the pixel and the
direction representing the spectral characteristic of the
pixel. A spectral angle may be represented between two
bands in a plane, as illustrated in Figure 12a, or
between three spectral bands (i.e., a three-dimensional
space), as shown in Figure 12b (Kruse et al., 1993).

This method determines the degree of similarity
between an unknown spectrum (t) and a reference
spectrum (r) in an n-dimensional space, where n
represents the number of spectral channels present in
the image. This is achieved by applying the following
equation, as proposed by Kruse et al. (1993):
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Figure 10. Hyperion EO-1 Image of the Study Area Before (a) and After (b) Geometric Correction.
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Results and Discussion
Space Data in Mapping Gypsum Quantify

The spectral libraries of gypsum at varying levels
utilized by the SAM technique for gypsum mapping
quantification yielded three maps of gypsum presence
per terrestrial unit. Figure 13 illustrates the
geographical distribution of gypsum percent mapped
across three quantifying ranges.

Figure 13a depicts the geographic distribution of
gypsum, which has spread over an area exceeding 50%
of the total area (25*25m) and encompasses 1188 ha.
Figure 13b illustrates the spread of gypsum exceeding
70%, encompassing an area of 932 hectares.
Additionally, the map in Figure 13¢ depicts the spread
of gypsum exceeding 85% and occupying 395 ha. This
result is more precise and encompasses a broader range
of wavelengths than those determined by Milewski et
al. (2019). Maps that quantify gypsum and its
distribution are invaluable for optimal investment
planning and effective, sustainable management of this
resource.

Accuracy Assessment

The efficacy of hyperspectral image-based gypsum
map quantification was evaluated through a
comparative analysis of field observations and the
resulting accuracy assessment. A total of 48 field
locations were selected based on the gypsum maps,
which represent three distinct quantity levels (Figure
14). Twenty field locations exhibited gypsum levels
between 50 and 70%, while fifteen locations
demonstrated gypsum levels between 70 and 85%.
Additionally, fifteen locations displayed gypsum levels
between 85 and 95%. Concurrently, forty-eight
locations exhibited gypsum levels between 50 and 95%.

Static indicators were employed for the assessment
of model performance in the estimation of gypsum by
equations (Dodge, 2008), including the calculation of
accuracy metrics such as the root-mean-square error
(RMSE) and the determination coefficient (R2).

n

ACC =2 OL—PL 100
= —x *
n ( (0]} )

i=1
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1 n
RMSE = HZ (Pi — 0i)2
i

P2 _ 4 _ ZHC0i— P
200 — 0i)?

[where: (acc) is the accuracy assessment, (n) is
number of samples, O and P are the observed/ recorded
and predicted gypsum percent, respectively, for field i
up to n].

Figure 15 depicts the static indicators' results of
the model performance, which estimate the gypsum
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percent and spread using a hyperspectral image in the
Jayroud region.

The accuracy assessment value of the model
performance is -11.5, indicating that the predicted
gypsum percent is less than the observed value by
approximately 11.5%. The root mean square error
(RMSE) was found to be 10.25, and the coefficient of
determination (R?) was 0.8 for gypsum percent 50-70%,
0.73 for 70-85%, 0.72 for 85-95%, and 0.94 for gypsum
percent more 50%. These results indicate a significant
confidence in the model's ability to map and estimate
gypsum, particularly within a wide range of gypsum
presence. This is a more precise and accurate
determination than that of Chatrenor et al. (2020) and
Milewski et al. (2019).

(@)
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Figure 13. Maps of Gypsum Percent and Spread for Jayroud Region.
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Conclusion

The model of mapping gypsum using spectral
libraries and the SAM technique on hyperspectral
images demonstrated a high degree of accuracy when
compared with field observations. The aforementioned
advantages can be optimized through the use of an
unmanned aerial vehicle (UAV) for periodic monitoring
and high-spatial resolution. Additionally, the
application of machine learning (ML) and artificial
intelligence (AI) methods in data processing enables the
extraction of information from large hyperspectral data
sets. Periodic mapping and high quantifying facilitate
optimal investment planning and effective sustainable
management of resources.
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