Sustainable Pavement Materials: A Comprehensive Review of Performance, Environmental Impacts, and Implementation Challenges

Authors
  • Abak Badran

    University of Bologna image/svg+xml
  • Waseem Aldabbik

    Cracow University of Technology image/svg+xml
  • Wesam Al Agha

    University “G. d’Annunzio” of Chieti-Pescara
  • Razan Alzein

    Veltech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology
Keywords:
Sustainable Pavements, Reclaimed Asphalt Pavement, Warm-Mix Asphalt, Bio-Binders, Life-Cycle Assessment
Abstract

Sustainability has become a central focus in pavement engineering, particularly in the selection and design of materials. This review examines advances in sustainable pavement technologies, including recycled aggregates, reclaimed asphalt pavement (RAP), warm-mix asphalt (WMA), bio-binders, industrial byproducts, and other eco-friendly innovations such as recycled rubber and plastics. Studies up to 2022 highlight significant environmental, economic, and performance benefits. RAP and recycled concrete aggregates reduce virgin aggregate demand and greenhouse gas emissions, often without compromising durability. WMA allows asphalt production at lower temperatures, reducing energy use and emissions by 20–75%, while improving workability and accommodating higher recycling rates. Bio-binders derived from renewable or waste resources lower carbon footprints but may require optimization for high-temperature performance. Industrial byproducts like fly ash and slag not only valorize waste but can enhance pavement durability. Life-cycle assessment (LCA) consistently demonstrates that integrating sustainable materials reduces environmental burdens across a pavement’s service life compared to traditional materials. Overall, sustainable pavement technologies offer dual benefits: environmental impact reduction and economic viability, while maintaining reliable structural performance. These findings align with global objectives to advance sustainable infrastructure and highlight the critical role of innovative materials in future pavement systems.

References

Ahmad, J., Kontoleon, K. J., Majdi, A., Naqash, M. T., Deifalla, A. F., Ben Kahla, N., Isleem, H. F., & Qaidi, S. M. A. (2022). A Comprehensive Review on the Ground Granulated Blast Furnace Slag (GGBS) in Concrete Production. Sustainability, 14(14), 8783. https://doi.org/10.3390/su14148783

Almutairi, A. L., Tayeh, B. A., Adesina, A., Isleem, H. F., & Zeyad, A. M. (2021). Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials, 15, e00733. https://doi.org/10.1016/j.cscm.2021.e00733

Alsolieman, H. A., Babalghaith, A. M., Memon, Z. A., Al-Suhaibani, A. S., & Milad, A. (2021). Evaluation and Comparison of Mechanical Properties of Polymer-Modified Asphalt Mixtures. Polymers, 13(14), 2282. https://doi.org/10.3390/polym13142282

Alwetaishi, M., Kamel, M., & Al-Bustami, N. (2019). Sustainable applications of asphalt mixes with reclaimed asphalt pavement (RAP) materials: innovative and new building brick. International Journal of Low-Carbon Technologies, 14(3), 364–374. https://doi.org/10.1093/ijlct/ctz023

Arshad, A. K., Abd Karim, Z., Shaffie, E., Hashim, W., & Abd Rahman, Z. (2017). Marshall properties and rutting resistance of hot mix asphalt with variable reclaimed asphalt pavement (RAP) content. IOP Conference Series: Materials Science and Engineering, 271, 012078. https://doi.org/10.1088/1757-899X/271/1/012078

Bastidas-Martínez, J. G., Reyes-Lizcano, F. A., & Rondón-Quintana, H. A. (2022). Use of recycled concrete aggregates in asphalt mixtures for pavements: A review. Journal of Traffic and Transportation Engineering (English Edition), 9(5), 725–741. https://doi.org/10.1016/j.jtte.2022.08.001

Bilema, M., Yuen, C. W., Alharthai, M., Al-Saffar, Z. H., Al-Sabaeei, A., & Yusoff, N. I. M. (2023). A Review of Rubberised Asphalt for Flexible Pavement Applications: Production, Content, Performance, Motivations and Future Directions. Sustainability, 15(19), 14481. https://doi.org/10.3390/su151914481

Cheng, J., Shen, J., & Xiao, F. (2011). Moisture Susceptibility of Warm-Mix Asphalt Mixtures Containing Nanosized Hydrated Lime. Journal of Materials in Civil Engineering, 23(11), 1552–1559. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000308

Dash, M. K., Patro, S. K., & Rath, A. K. (2016). Sustainable use of industrial-waste as partial replacement of fine aggregate for preparation of concrete – A review. International Journal of Sustainable Built Environment, 5(2), 484–516. https://doi.org/10.1016/j.ijsbe.2016.04.006

Dughaishi, H. Al, Lawati, J. Al, Bilema, M., Babalghaith, A. M., Mashaan, N. S., Yusoff, N. I. Md., & Milad, A. (2022). Encouraging Sustainable Use of RAP Materials for Pavement Construction in Oman: A Review. Recycling, 7(3), 35. https://doi.org/10.3390/recycling7030035

Environmental Protection Agency. (2022). Fast Facts on Transportation Greenhouse Gas Emissions | US EPA. United States Environmental Protection Agency. https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions

Fakhri, M., & Ahmadi, A. (2017). Recycling of RAP and steel slag aggregates into the warm mix asphalt: A performance evaluation. Construction and Building Materials, 147, 630–638. https://doi.org/10.1016/j.conbuildmat.2017.04.117

Fakhri, M., & Hosseini, S. A. (2017). Laboratory evaluation of rutting and moisture damage resistance of glass fiber modified warm mix asphalt incorporating high RAP proportion. Construction and Building Materials, 134, 626–640. https://doi.org/10.1016/j.conbuildmat.2016.12.168

Farooq, M. A., & Mir, M. S. (2017). Use of reclaimed asphalt pavement (RAP) in warm mix asphalt (WMA) pavements: a review. Innovative Infrastructure Solutions, 2(1), 10. https://doi.org/10.1007/s41062-017-0058-7

Federal Highway Administration. (2022). Federal Rules: DESIGN STANDARDS FOR HIGHWAYS; FHWA-2019-0030 | U.S. GAO. https://www.gao.gov/fedrules/203667

Gillen, S. (2013). The Illinois Tollway’s Use of Composite Concrete Pavements with Greener Concrete for Improved Sustainability. https://pavement.engineering.asu.edu/wp-content/uploads/sites/16/2013/12/Illinois-Tollway-Steven-Gillen.pdf

Goh, S. W., You, Z., & Van Dam, T. J. (2007). Laboratory Evaluation and Pavement Design for Warm Mix Asphalt. Mid-Continent Transportation Research Symposium.

Huang, X., Yan, F., Guo, R., & He, H. (2022). Study on the Performance of Steel Slag and Its Asphalt Mixture with Oxalic Acid and Water Erosion. Materials, 15(19), 6642. https://doi.org/10.3390/ma15196642

Jayakody, S., Gallage, C., & Ramanujam, J. (2019). Performance characteristics of recycled concrete aggregate as an unbound pavement material. Heliyon, 5(9), e02494. https://doi.org/10.1016/j.heliyon.2019.e02494

Kox, S., Vanroelen, G., Van Herck, J., de Krem, H., & Vandoren, B. (2019). Experimental evaluation of the high-grade properties of recycled concrete aggregates and their application in concrete road pavement construction. Case Studies in Construction Materials, 11, e00282. https://doi.org/10.1016/j.cscm.2019.e00282

Marathe, S., Shetty, T. S., Mithun, B. M., & Ranjith, A. (2021). Strength and durability studies on air cured alkali activated pavement quality concrete mixes incorporating recycled aggregates. Case Studies in Construction Materials, 15, e00732. https://doi.org/10.1016/j.cscm.2021.e00732

M.G., G., Shetty, K. K., & Nayak, G. (2022). Synthesis of Fly-ash and Slag Based Geopolymer Concrete for Rigid Pavement. Materials Today: Proceedings, 60, 46–54. https://doi.org/10.1016/j.matpr.2021.11.332

Mikhailenko, P., Rafiq Kakar, M., Piao, Z., Bueno, M., & Poulikakos, L. (2020). Incorporation of recycled concrete aggregate (RCA) fractions in semi-dense asphalt (SDA) pavements: Volumetrics, durability and mechanical properties. Construction and Building Materials, 264, 120166. https://doi.org/10.1016/j.conbuildmat.2020.120166

Milad, A., Babalghaith, A. M., Al-Sabaeei, A. M., Dulaimi, A., Ali, A., Reddy, S. S., Bilema, M., & Yusoff, N. I. M. (2022). A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement. International Journal of Environmental Research and Public Health, 19(22), 14863. https://doi.org/10.3390/ijerph192214863

Mohd Hasan, M. R., You, Z., Porter, D., & Goh, S. W. (2015). Laboratory moisture susceptibility evaluation of WMA under possible field conditions. Construction and Building Materials, 101, 57–64. https://doi.org/10.1016/j.conbuildmat.2015.10.004

Padula, F. R. G., Nicodemos, S., Mendes, J. C., Willis, R., & Taylor, A. (2019). Evaluation of fatigue performance of high RAP-WMA mixtures. International Journal of Pavement Research and Technology, 12(4), 430–434. https://doi.org/10.1007/s42947-019-0051-y

Pereira, P. M., & Vieira, C. S. (2022). A Literature Review on the Use of Recycled Construction and Demolition Materials in Unbound Pavement Applications. Sustainability, 14(21), 13918. https://doi.org/10.3390/su142113918

Polo-Mendoza, R., Peñabaena-Niebles, R., Giustozzi, F., & Martinez-Arguelles, G. (2022). Eco-friendly design of Warm mix asphalt (WMA) with recycled concrete aggregate (RCA): A case study from a developing country. Construction and Building Materials, 326, 126890. https://doi.org/10.1016/j.conbuildmat.2022.126890

Ramadhansyah, P. J., Masri, K. A., Wan Azahar, W. N. A., Mashros, N., Norhidayah, A. H., Mohd Warid, M. N., Satar, M. K. I. M., & Yaacob, H. (2020). Waste Cooking Oil as Bio Asphalt Binder: A Critical Review. IOP Conference Series: Materials Science and Engineering, 712(1), 012040. https://doi.org/10.1088/1757-899X/712/1/012040

Saberi.K, F., Fakhri, M., & Azami, A. (2017). Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement and crumb rubber. Journal of Cleaner Production, 165, 1125–1132. https://doi.org/10.1016/j.jclepro.2017.07.079

Shmlls, M., Abed, M., Horvath, T., & Bozsaky, D. (2022). Multicriteria based optimization of second generation recycled aggregate concrete. Case Studies in Construction Materials, 17, e01447. https://doi.org/10.1016/j.cscm.2022.e01447

Taha, R., Ali, G., Basma, A., & Al-Turk, O. (1999). Evaluation of Reclaimed Asphalt Pavement Aggregate in Road Bases and Subbases. Transportation Research Record: Journal of the Transportation Research Board, 1652(1), 264–269. https://doi.org/10.3141/1652-33

Tarsi, G., Tataranni, P., & Sangiorgi, C. (2020). The Challenges of Using Reclaimed Asphalt Pavement for New Asphalt Mixtures: A Review. Materials, 13(18), 4052. https://doi.org/10.3390/ma13184052

Tayeh, B. A., Hamada, H. M., Almeshal, I., & Bakar, B. H. A. (2022). Durability and mechanical properties of cement concrete comprising pozzolanic materials with alkali-activated binder: A comprehensive review. Case Studies in Construction Materials, 17, e01429. https://doi.org/10.1016/j.cscm.2022.e01429

Taylor, P. (2019). Cementitious Materials | National Concrete Pavement Technology Center. https://www.cptechcenter.org/cementitious-materials/

Thives, L. P., & Ghisi, E. (2017). Asphalt mixtures emission and energy consumption: A review. Renewable and Sustainable Energy Reviews, 72, 473–484. https://doi.org/10.1016/j.rser.2017.01.087

Tiza, T. M., Mogbo, O., Singh, S. K., Shaik, N., & Shettar, M. P. (2022). Bituminous pavement sustainability improvement strategies. Energy Nexus, 6, 100065. https://doi.org/10.1016/j.nexus.2022.100065

Vargas-Nordcbeck, A., & Timm, D. H. (2012). Rutting characterization of warm mix asphalt and high RAP mixtures. Road Materials and Pavement Design, 13(sup1), 1–20. https://doi.org/10.1080/14680629.2012.657042

Wang, J., Li, Q., Huang, K., Ge, D., & Gong, F. (2022). Sustainable Recycling Techniques of Pavement Materials. Materials, 15(24), 8710. https://doi.org/10.3390/ma15248710

Wang, P., Liu, H., Guo, H., Yu, Y., Guo, Y., Yue, G., Li, Q., & Wang, L. (2023). Study on preparation and performance of alkali-activated low carbon recycled concrete: Corn cob biomass aggregate. Journal of Materials Research and Technology, 23, 90–105. https://doi.org/10.1016/j.jmrt.2022.12.164

Williams, B. A., & Willis, J. R. (2020). Asphalt Pavement Industry Survey on Recycled Materials and Warm-Mix Asphalt Usage 2020 Information Series 138 11th Annual Survey.

Xiao, Y., Kong, K., Aminu, U. F., Li, Z., Li, Q., Zhu, H., & Cai, D. (2022). Characterizing and Predicting the Resilient Modulus of Recycled Aggregates from Building Demolition Waste with Breakage-Induced Gradation Variation. Materials, 15(7), 2670. https://doi.org/10.3390/ma15072670

Xu, F., Zhao, Y., & Li, K. (2021). Using Waste Plastics as Asphalt Modifier: A Review. Materials, 15(1), 110. https://doi.org/10.3390/ma15010110

Xue, X., Gao, J., Wang, J., & Chen, Y. (2021). Evaluation of High-Temperature and Low-Temperature Performances of Lignin–Waste Engine Oil Modified Asphalt Binder and Its Mixture. Materials, 15(1), 52. https://doi.org/10.3390/ma15010052

Zhang, Z., Fang, Y., Yang, J., & Li, X. (2022). A comprehensive review of bio-oil, bio-binder and bio-asphalt materials: Their source, composition, preparation and performance. Journal of Traffic and Transportation Engineering (English Edition), 9(2), 151–166. https://doi.org/10.1016/j.jtte.2022.01.003

Zhao, X., Ge, D., Wang, J., Wu, D., & Liu, J. (2022). The Performance Evaluation of Asphalt Mortar and Asphalt Mixture Containing Municipal Solid Waste Incineration Fly Ash. Materials, 15(4), 1387. https://doi.org/10.3390/ma15041387

Zhao, X., Webber, R., Kalutara, P., Browne, W., & Pienaar, J. (2022). Construction and demolition waste management in Australia: A mini-review. Waste Management & Research: The Journal for a Sustainable Circular Economy, 40(1), 34–46. https://doi.org/10.1177/0734242X211029446

Cover Image
Downloads
Additional Files
Published
2023-10-26
Section
Review Article
License

Copyright (c) 2023 Abak Badran, Waseem Aldabbik, Wesam Al Agha, Razan Alzein

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Open Access Licences
User rights
All articles published open access will be immediately and permanently free for everyone to read and download, copy and distribute. 

How to Cite

Badran, A., Aldabbik, W., Al Agha, W., & Alzein, R. (2023). Sustainable Pavement Materials: A Comprehensive Review of Performance, Environmental Impacts, and Implementation Challenges. Steps For Civil, Constructions and Environmental Engineering, 1(2), 1-26. https://doi.org/10.61706/sccee12011187