Effect of Volume Fraction and Orientation of Steel Fiber on The Structural Performance of Normal Strength Reinforced Concrete Beams
- Authors
-
-
Lynn Dayaa
University of Balamand - Lebanon -
Prof. Joseph Assaad
University of Balamand - Lebanon -
Prof. Jamal Khatib
University of Wolverhampton, Wolverhampton, UK.
-
- Keywords:
- Steel Fiber-Reinforced Concrete, Fiber Orientation and Dosage, Structural Performance of RC Beams, Finite Element Modelling, Shear and Flexural Strength
- Abstract
-
The present study investigates the impact of steel fiber dosage and orientation on the structural performance of steel fiber-reinforced concrete (SFRC) beams through a combination of experimental testing and numerical simulation. RC beams with 0%, 0.25%, and 0.5% hooked-end steel fibers were evaluated under four-point bending. The findings indicated that the arrangement of horizontal fibers within the composite structure led to an enhancement in load-bearing capacity by up to 66% in comparison with the reference mixture. This observation was accompanied by the attainment of peak loads reaching 228.2 kN. In contrast, the alignment of vertical fibers within the composite exhibited an enhancement in stiffness, accompanied by a reduction in ductility. The random fiber distribution resulted in moderate performance outcomes. The finite element modeling (FEM) implemented in this study, utilizing the Abaqus software and the concrete damage plasticity (CDP) model, exhibited a high degree of concordance with the experimental outcomes, with prediction errors remaining within the 10% range. A comparison with ACI 318-19 revealed that conventional design models may overestimate shear strength, particularly for fiber-reinforced beams, by up to 87%. The findings emphasize the pivotal role of fiber alignment in enhancing the performance of RC beams and furnish valuable insights for formulating enhanced design strategies for seismic and high-load structural applications.
- References
-
ASTM A820/A820M. (2016). Standard Specification for Steel Fibers for Fiber-Reinforced Concrete. ASTM International.
Choi, E., Ostadrahimi, A., & Lee, J.-H. (2020). Pullout resistance of crimped reinforcing fibers using cold-drawn NiTi SMA wires. Construction & Building Materials, 265, 120858–120858. https://doi.org/10.1016/j.conbuildmat.2020.120858.
Derseh, S. A., Urgessa, G., & Mohammed, T. A. (2023). Finite element analysis of the response of conventional and special reinforcement detailed concrete beams subjected to impact loads. Structures, 52, 57–82. https://doi.org/10.1016/j.istruc.2023.03.162.
Fang, J., Wang, J., Xie, J., Wang, J., Li, T., Zhang, Y., Jiao, W., & Chen, L. (2024). A microscale modeling method for predicting the compressive behavior of 3D needled nonwoven fiber preforms. Materials & Design, 243, 113078–113078. https://doi.org/10.1016/j.matdes.2024.113078.
Fares, A. M. H., & Burak Bakir, B. (2024). Parametric study on the flexural behavior of steel fiber reinforced concrete beams utilizing nonlinear finite element analysis. Structures, 65, 106688. https://doi.org/10.1016/j.istruc.2024.106688.
Garber, G. (2014, April 29). Specifying steel fibers for concrete floors. Construction Specifier. https://www.constructionspecifier.com/specifying-steel-fibers-for-concrete-floors/
Ghali, A. E. A., El Ezz, N. E., Hamad, B., Assaad, J., & Yehya, A. (2023). Comparative study on shear strength and life cycle assessment of reinforced concrete beams containing different types of fibers. Case Studies in Construction Materials, 19, e02497. https://doi.org/10.1016/j.cscm.2023.e02497.
González, D. C., Mena, Á., Ruiz, G., Ortega, J. J., Poveda, E., Mínguez, J., Yu, R., De La Rosa, Á., & Vicente, M. Á. (2023). Size effect of steel fiber–reinforced concrete cylinders under compressive fatigue loading: Influence of the mesostructure. International Journal of Fatigue, 167, 107353. https://doi.org/10.1016/j.ijfatigue.2022.107353.
Han, J., Zhao, M., Chen, J., & Lan, X. (2019). Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete. Construction and Building Materials, 209, 577–591. https://doi.org/10.1016/j.conbuildmat.2019.03.086.
Hasan Tahsin Öztürk. (2024). Research on optimal solutions and algorithm stability analyses in RC continuous beam problems. Structures, 62, 106239–106239. https://doi.org/10.1016/j.istruc.2024.106239.
Hoseini, S. O., Sohrabi, M. R., Mousavi, S. R., & Ghasemi, M. (2022). Effects of coarse aggregate and wavy steel fiber volumes on the critical stress intensity factors of modes I and III cracks in self-compacting concrete using ENDB specimens. Theoretical and Applied Fracture Mechanics, 121, 103421. https://doi.org/10.1016/j.tafmec.2022.103421.
Huang, H., Gao, X., & Teng, L. (2021). Fiber alignment and its effect on mechanical properties of UHPC: An overview. Construction and Building Materials, 296, 123741. https://doi.org/10.1016/j.conbuildmat.2021.123741.
Kaushik, V., Singh, D., & Kumar, M. (2021). Effects of Fibers on Compressive Strength of Concrete. Materials Today: Proceedings, 80. https://doi.org/10.1016/j.matpr.2021.07.229.
Kumar, A., DasGupta, A., & Jain, A. (2024). Microstructure generation algorithm and micromechanics of curved fiber composites with random waviness. International Journal of Solids and Structures, 289, 112625–112625. https://doi.org/10.1016/j.ijsolstr.2023.112625.
Lee, C., & Kim, H. (2010). Orientation factor and number of fibers at failure plane in ring-type steel fiber reinforced concrete. Cement and Concrete Research, 40(5), 810–819. https://doi.org/10.1016/j.cemconres.2009.11.009.
Li, J., Wang, F., Zhang, C., Li, Q., & Chen, T. (2024). A review of mesoscopic modeling and constitutive equations of particle-reinforced metals matrix composites based on finite element method. Heliyon, 10(5), e26844–e26844. https://doi.org/10.1016/j.heliyon.2024.e26844.
Li, M., Li, P., Qi, G., Li, S., Chen, R., Siwei Lv, Ding, Y., & Li, C. (2024). Enhancing mechanical properties and thermal shock resistance of steel fiber reinforced mullite castable through magnetic field treatment. Construction & Building Materials, 432, 136668–136668. https://doi.org/10.1016/j.conbuildmat.2024.136668.
Li, S., Guan, C., Li, H., Wang, H., & Liang, L. (2024). Size-dependent fracture behavior of steel fiber reinforced cement mortar modified by polymer. Journal of Building Engineering, 89, 109297–109297. https://doi.org/10.1016/j.jobe.2024.109297.
Li, Y., Liu, F., Li, H., Pan, Y., & Liu, C. (2024). A comparative study on the pullout behavior of hooked-end straight and arc-shaped steel fibers from brittle SIFCON matrices under the influence of adjacent fibers. Construction & Building Materials, 418, 135311–135311. https://doi.org/10.1016/j.conbuildmat.2024.135311.
Li, Y., Zhang, W., Sun, G., Yuxin Xiu, Zhang, Z., Li, C., & Zhang, Y. (2023). A new orientational molding method for ultra-high performance concrete with high content of steel fiber and investigation on its flexure and axial tensile properties. Construction & Building Materials, 400, 132755–132755. https://doi.org/10.1016/j.conbuildmat.2023.132755.
Liu, K., Lu, L., Wang, F., & Liang, W. (2017). Theoretical and experimental study on multi-phase model of thermal conductivity for fiber reinforced concrete. Construction and Building Materials, 148, 465–475. https://doi.org/10.1016/j.conbuildmat.2017.05.043.
Lorente, S., Carmona, S., & Molins, C. (2022). Use of fiber orientation factor to determine residual strength of steel fiber reinforced concrete. Construction and Building Materials, 360, 128878. https://doi.org/10.1016/j.conbuildmat.2022.128878.
Michalik, A., Chyliński, F., Piekarczuk, A., &Pichór, W. (2023). Evaluation of recycled tyre steel fibres adhesion to cement matrix. Journal of Building Engineering, 68, 106146. https://doi.org/10.1016/j.jobe.2023.106146.
Mu, R., Chen, J., Chen, X., Diao, C., Wang, X., & Qing, L. (2023). Effect of the orientation of steel fiber on the strength of ultra-high-performance concrete (UHPC). Construction & Building Materials, 406, 133431–133431. https://doi.org/10.1016/j.conbuildmat.2023.133431.
Nhut, P. V., Yoresta, F. S., Duc, T. Q., & Matsumoto, Y. (2024). Strengthening of glass fiber sheets for multi-bolted pultruded GFRP connections: Effects of connection type and bolt-tightening force. Structures, 65, 106696. https://doi.org/10.1016/j.istruc.2024.106696.
Peng, S., Wu, B., Du, X., Zhao, Y., & Yu, Z. (2023). Study on dynamic splitting tensile mechanical properties and microscopic mechanism analysis of steel fiber reinforced concrete. Structures, 58, 105502. https://doi.org/10.1016/j.istruc.2023.105502.
Qin, X., Huang, X., Li, Y., & Sakdirat Kaewunruen. (2024). Sustainable design framework for enhancing shear capacity in beams using recycled steel fiber-reinforced high-strength concrete. Construction & Building Materials, 411, 134509–134509. https://doi.org/10.1016/j.conbuildmat.2023.134509.
Qin, Y., Su, J., Cao, J., & Liu, R. (2023). Investigation of orientation coefficient on meso-damage evolution of steel fiber-reinforced cement composites. Engineering Fracture Mechanics, 284, 109210–109210. https://doi.org/10.1016/j.engfracmech.2023.109210.
Ramakrishnan, S. (2022). Comparative Study on the Behavior of Fiber Reinforced Concrete. Materials Research Proceedings. https://doi.org/10.21741/9781644901953-13.
Ravichandran, D., Prem, P. R., Kaliyavaradhan, S. K., & Ambily, P. S. (2022). Influence of fibers on fresh and hardened properties of Ultra High Performance Concrete (UHPC)—A review. Journal of Building Engineering, 57, 104922. https://doi.org/10.1016/j.jobe.2022.104922.
Saatci, S., Sirin Cetin, F., Aloui, S., & Naseri, J. (2024). Effects of steel fiber type and ratio on the one-way bending behavior of hybrid fiber reinforced concrete thin panels. Construction & Building Materials, 411, 134190–134190. https://doi.org/10.1016/j.conbuildmat.2023.134190.
Shashikumara, S. R., Pramukh, N., Abhishek, R., & Nagaraj, V. K. (2023). Experimental study on the influence of polypropylene and steel fiber on flexural behaviours of high strength concrete beams. Materials Today: Proceedings, 88, 85–92. https://doi.org/10.1016/j.matpr.2023.05.020.
Solahuddin Bin Azuwa, & Bin, F. (2024). Experimental investigation and finite element analysis of reinforced concrete beams strengthened by fibre reinforced polymer composite materials : A review. Alexandria Engineering Journal /Alexandria Engineering Journal, 99, 137–167. https://doi.org/10.1016/j.aej.2024.05.017.
WALCOOM. (2024). Melt Extract Stainless Steel Often Apply to Torpedo Ladle & Fire Clays. Walcoom.com. https://www.walcoom.com/pro/architecturalmesh/steel-fiber/melt-stainless-steel-fiber.html
Wang, Q., & Xu, Y. (2024). Macro-meso cracking inversion modelling of three-point bending concrete beam with random aggregates using cohesive zone model. Theoretical and Applied Fracture Mechanics, 133, 104566–104566. https://doi.org/10.1016/j.tafmec.2024.104566.
Wang, W., Zhang, C., Zhang, Z., Li, L., & Wei, J. (2024). Experimental and numerical simulation study on flexural performance of high-strength reinforced concrete beams under static loading. Structures, 63, 106482–106482. https://doi.org/10.1016/j.istruc.2024.106482.
Wei, H., Huang, X., Xie, W., Jiang, X., Zhao, G., & Zhang, W. (2024). Multiscale modeling for the impact behavior of 3D angle-interlock woven composites. International Journal of Mechanical Sciences, 276, 109382–109382. https://doi.org/10.1016/j.ijmecsci.2024.109382.
Wu, F., Yu, Q., & Chen, X. (2022). Effects of steel fibre type and dosage on abrasion resistance of concrete against debris flow. Cement and Concrete Composites, 134, 104776. https://doi.org/10.1016/j.cemconcomp.2022.104776.
Yadav, D., M.H. Prashanth, & Kumar, N. (2023). Numerical study on the effect of steel fibers on fracture and size effect in concrete beams. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.690.
Yang, K., Wu, Z., Zheng, K., & Shi, J. (2024). Design and flexural behavior of steel fiber-reinforced concrete beams with regular oriented fibers and GFRP bars. Engineering Structures/Engineering Structures (Online), 309, 118073–118073. https://doi.org/10.1016/j.engstruct.2024.118073.
Zhang, P., Wang, C., Gao, Z., & Wang, F. (2023). A review on fracture properties of steel fiber reinforced concrete. Journal of Building Engineering, 67, 105975. https://doi.org/10.1016/j.jobe.2023.105975.
Zhang, P., Wang, C., Guo, J., Wu, J., & Zhang, C. (2024). Production of sustainable steel fiber-reinforced rubberized concrete with enhanced mechanical properties: A state-of-the-art review. Journal of Building Engineering, 91, 109735–109735. https://doi.org/10.1016/j.jobe.2024.109735.
Zhang, T., Cui, J., Chen, M., Feng, X., Jiang, X., & Chen, Q. (2023). Feasibility of utilising waste tyre steel fibres to develop sustainable engineered cementitious composites: Engineering properties, impact resistance and environmental assessment. Journal of Cleaner Production, 427, 139148. https://doi.org/10.1016/j.jclepro.2023.139148.
Zhang, W., Zhang, S., Wei, J., & Huang, Y. (2024). Flexural behavior of SFRC-NC composite beams: An experimental and numerical analytical study. Structures, 60, 105823–105823. https://doi.org/10.1016/j.istruc.2023.105823.
Zheng, Y., Lv, X., Hu, S., Zhuo, J., Wan, C., & Liu, J. (2024). Mechanical properties and durability of steel fiber reinforced concrete: A review. Journal of Building Engineering, 82, 108025. https://doi.org/10.1016/j.jobe.2023.108025.
Zia, A., Zhang, P., & Holly, I. (2023). Effectiveness of hybrid discarded tire/Industrial steel fibers for improving the sustainability of concrete structures. Construction and Building Materials, 378, 131226. https://doi.org/10.1016/j.conbuildmat.2023.131226.
- Downloads
- Additional Files
- Published
- 2024-12-02
- Section
- Research Article/Original Research
- Categories
- License
-
Copyright (c) 2024 Lynn Dayaa, Prof. Joseph Assaad, Prof. Jamal Khatib

This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access Licences
User rights
All articles published open access will be immediately and permanently free for everyone to read and download, copy and distribute.
How to Cite
Most read articles by the same author(s)
- Hussein Zeaiter, Ali Jahami, Jamal Khatib, Bio-Concrete and Beyond: Advancements in Self-Healing Techniques for Durable Infrastructure , Steps For Civil, Constructions and Environmental Engineering: Vol. 1 No. 1 (2023): July - September 2023
- Ali Jahami, Jamal Khatib, Jad Bawab, An Experimental and Numerical Evaluation of the Structural Performance of Concrete Beams Containing Bamboo Shear Reinforcement , Steps For Civil, Constructions and Environmental Engineering: Vol. 1 No. 1 (2023): July - September 2023
- Jamal Khatib, Lelian W ElKhatib, Hassan Ghanem, Adel Elkordi, Recent Trends in Construction Materials Using Bio-Ash , Steps For Civil, Constructions and Environmental Engineering: Vol. 3 No. 2 (2025): April - June 2025
