Effect of Volume Fraction and Orientation of Steel Fiber on The Structural Performance of Normal Strength Reinforced Concrete Beams
Lynn Dayaa
University of Balamand - Lebanon
Prof. Joseph Assaad
University of Balamand - Lebanon
Prof. Jamal Khatib
University of Wolverhampton, Wolverhampton, UK.
DOI: https://doi.org/10.61706/sccee12011135
Keywords: Steel Fiber-Reinforced Concrete, Fiber Orientation and Dosage, Structural Performance of RC Beams, Finite Element Modelling, Shear and Flexural Strength
Abstract
The present study investigates the impact of steel fiber dosage and orientation on the structural performance of steel fiber-reinforced concrete (SFRC) beams through a combination of experimental testing and numerical simulation. RC beams with 0%, 0.25%, and 0.5% hooked-end steel fibers were evaluated under four-point bending. The findings indicated that the arrangement of horizontal fibers within the composite structure led to an enhancement in load-bearing capacity by up to 66% in comparison with the reference mixture. This observation was accompanied by the attainment of peak loads reaching 228.2 kN. In contrast, the alignment of vertical fibers within the composite exhibited an enhancement in stiffness, accompanied by a reduction in ductility. The random fiber distribution resulted in moderate performance outcomes. The finite element modeling (FEM) implemented in this study, utilizing the Abaqus software and the concrete damage plasticity (CDP) model, exhibited a high degree of concordance with the experimental outcomes, with prediction errors remaining within the 10% range. A comparison with ACI 318-19 revealed that conventional design models may overestimate shear strength, particularly for fiber-reinforced beams, by up to 87%. The findings emphasize the pivotal role of fiber alignment in enhancing the performance of RC beams and furnish valuable insights for formulating enhanced design strategies for seismic and high-load structural applications.
Downloads
References
ASTM A820/A820M. (2016). Standard Specification for Steel Fibers for Fiber-Reinforced Concrete. ASTM International.
Choi, E., Ostadrahimi, A., & Lee, J.-H. (2020). Pullout resistance of crimped reinforcing fibers using cold-drawn NiTi SMA wires. Construction & Building Materials, 265, 120858–120858. https://doi.org/10.1016/j.conbuildmat.2020.120858. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120858
Derseh, S. A., Urgessa, G., & Mohammed, T. A. (2023). Finite element analysis of the response of conventional and special reinforcement detailed concrete beams subjected to impact loads. Structures, 52, 57–82. https://doi.org/10.1016/j.istruc.2023.03.162. DOI: https://doi.org/10.1016/j.istruc.2023.03.162
Fang, J., Wang, J., Xie, J., Wang, J., Li, T., Zhang, Y., Jiao, W., & Chen, L. (2024). A microscale modeling method for predicting the compressive behavior of 3D needled nonwoven fiber preforms. Materials & Design, 243, 113078–113078. https://doi.org/10.1016/j.matdes.2024.113078. DOI: https://doi.org/10.1016/j.matdes.2024.113078
Fares, A. M. H., & Burak Bakir, B. (2024). Parametric study on the flexural behavior of steel fiber reinforced concrete beams utilizing nonlinear finite element analysis. Structures, 65, 106688. https://doi.org/10.1016/j.istruc.2024.106688. DOI: https://doi.org/10.1016/j.istruc.2024.106688
Garber, G. (2014, April 29). Specifying steel fibers for concrete floors. Construction Specifier. https://www.constructionspecifier.com/specifying-steel-fibers-for-concrete-floors/
Ghali, A. E. A., El Ezz, N. E., Hamad, B., Assaad, J., & Yehya, A. (2023). Comparative study on shear strength and life cycle assessment of reinforced concrete beams containing different types of fibers. Case Studies in Construction Materials, 19, e02497. https://doi.org/10.1016/j.cscm.2023.e02497. DOI: https://doi.org/10.1016/j.cscm.2023.e02497
González, D. C., Mena, Á., Ruiz, G., Ortega, J. J., Poveda, E., Mínguez, J., Yu, R., De La Rosa, Á., & Vicente, M. Á. (2023). Size effect of steel fiber–reinforced concrete cylinders under compressive fatigue loading: Influence of the mesostructure. International Journal of Fatigue, 167, 107353. https://doi.org/10.1016/j.ijfatigue.2022.107353. DOI: https://doi.org/10.1016/j.ijfatigue.2022.107353
Han, J., Zhao, M., Chen, J., & Lan, X. (2019). Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete. Construction and Building Materials, 209, 577–591. https://doi.org/10.1016/j.conbuildmat.2019.03.086. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.086
Hasan Tahsin Öztürk. (2024). Research on optimal solutions and algorithm stability analyses in RC continuous beam problems. Structures, 62, 106239–106239. https://doi.org/10.1016/j.istruc.2024.106239. DOI: https://doi.org/10.1016/j.istruc.2024.106239
Hoseini, S. O., Sohrabi, M. R., Mousavi, S. R., & Ghasemi, M. (2022). Effects of coarse aggregate and wavy steel fiber volumes on the critical stress intensity factors of modes I and III cracks in self-compacting concrete using ENDB specimens. Theoretical and Applied Fracture Mechanics, 121, 103421. https://doi.org/10.1016/j.tafmec.2022.103421. DOI: https://doi.org/10.1016/j.tafmec.2022.103421
Huang, H., Gao, X., & Teng, L. (2021). Fiber alignment and its effect on mechanical properties of UHPC: An overview. Construction and Building Materials, 296, 123741. https://doi.org/10.1016/j.conbuildmat.2021.123741. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123741
Kaushik, V., Singh, D., & Kumar, M. (2021). Effects of Fibers on Compressive Strength of Concrete. Materials Today: Proceedings, 80. https://doi.org/10.1016/j.matpr.2021.07.229. DOI: https://doi.org/10.1016/j.matpr.2021.07.229
Kumar, A., DasGupta, A., & Jain, A. (2024). Microstructure generation algorithm and micromechanics of curved fiber composites with random waviness. International Journal of Solids and Structures, 289, 112625–112625. https://doi.org/10.1016/j.ijsolstr.2023.112625. DOI: https://doi.org/10.1016/j.ijsolstr.2023.112625
Lee, C., & Kim, H. (2010). Orientation factor and number of fibers at failure plane in ring-type steel fiber reinforced concrete. Cement and Concrete Research, 40(5), 810–819. https://doi.org/10.1016/j.cemconres.2009.11.009. DOI: https://doi.org/10.1016/j.cemconres.2009.11.009
Li, J., Wang, F., Zhang, C., Li, Q., & Chen, T. (2024). A review of mesoscopic modeling and constitutive equations of particle-reinforced metals matrix composites based on finite element method. Heliyon, 10(5), e26844–e26844. https://doi.org/10.1016/j.heliyon.2024.e26844. DOI: https://doi.org/10.1016/j.heliyon.2024.e26844
Li, M., Li, P., Qi, G., Li, S., Chen, R., Siwei Lv, Ding, Y., & Li, C. (2024). Enhancing mechanical properties and thermal shock resistance of steel fiber reinforced mullite castable through magnetic field treatment. Construction & Building Materials, 432, 136668–136668. https://doi.org/10.1016/j.conbuildmat.2024.136668. DOI: https://doi.org/10.1016/j.conbuildmat.2024.136668
Li, S., Guan, C., Li, H., Wang, H., & Liang, L. (2024). Size-dependent fracture behavior of steel fiber reinforced cement mortar modified by polymer. Journal of Building Engineering, 89, 109297–109297. https://doi.org/10.1016/j.jobe.2024.109297. DOI: https://doi.org/10.1016/j.jobe.2024.109297
Li, Y., Liu, F., Li, H., Pan, Y., & Liu, C. (2024). A comparative study on the pullout behavior of hooked-end straight and arc-shaped steel fibers from brittle SIFCON matrices under the influence of adjacent fibers. Construction & Building Materials, 418, 135311–135311. https://doi.org/10.1016/j.conbuildmat.2024.135311. DOI: https://doi.org/10.1016/j.conbuildmat.2024.135311
Li, Y., Zhang, W., Sun, G., Yuxin Xiu, Zhang, Z., Li, C., & Zhang, Y. (2023). A new orientational molding method for ultra-high performance concrete with high content of steel fiber and investigation on its flexure and axial tensile properties. Construction & Building Materials, 400, 132755–132755. https://doi.org/10.1016/j.conbuildmat.2023.132755. DOI: https://doi.org/10.1016/j.conbuildmat.2023.132755
Liu, K., Lu, L., Wang, F., & Liang, W. (2017). Theoretical and experimental study on multi-phase model of thermal conductivity for fiber reinforced concrete. Construction and Building Materials, 148, 465–475. https://doi.org/10.1016/j.conbuildmat.2017.05.043. DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.043
Lorente, S., Carmona, S., & Molins, C. (2022). Use of fiber orientation factor to determine residual strength of steel fiber reinforced concrete. Construction and Building Materials, 360, 128878. https://doi.org/10.1016/j.conbuildmat.2022.128878. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128878
Michalik, A., Chyliński, F., Piekarczuk, A., &Pichór, W. (2023). Evaluation of recycled tyre steel fibres adhesion to cement matrix. Journal of Building Engineering, 68, 106146. https://doi.org/10.1016/j.jobe.2023.106146. DOI: https://doi.org/10.1016/j.jobe.2023.106146
Mu, R., Chen, J., Chen, X., Diao, C., Wang, X., & Qing, L. (2023). Effect of the orientation of steel fiber on the strength of ultra-high-performance concrete (UHPC). Construction & Building Materials, 406, 133431–133431. https://doi.org/10.1016/j.conbuildmat.2023.133431. DOI: https://doi.org/10.1016/j.conbuildmat.2023.133431
Nhut, P. V., Yoresta, F. S., Duc, T. Q., & Matsumoto, Y. (2024). Strengthening of glass fiber sheets for multi-bolted pultruded GFRP connections: Effects of connection type and bolt-tightening force. Structures, 65, 106696. https://doi.org/10.1016/j.istruc.2024.106696. DOI: https://doi.org/10.1016/j.istruc.2024.106696
Peng, S., Wu, B., Du, X., Zhao, Y., & Yu, Z. (2023). Study on dynamic splitting tensile mechanical properties and microscopic mechanism analysis of steel fiber reinforced concrete. Structures, 58, 105502. https://doi.org/10.1016/j.istruc.2023.105502. DOI: https://doi.org/10.1016/j.istruc.2023.105502
Qin, X., Huang, X., Li, Y., & Sakdirat Kaewunruen. (2024). Sustainable design framework for enhancing shear capacity in beams using recycled steel fiber-reinforced high-strength concrete. Construction & Building Materials, 411, 134509–134509. https://doi.org/10.1016/j.conbuildmat.2023.134509. DOI: https://doi.org/10.1016/j.conbuildmat.2023.134509
Qin, Y., Su, J., Cao, J., & Liu, R. (2023). Investigation of orientation coefficient on meso-damage evolution of steel fiber-reinforced cement composites. Engineering Fracture Mechanics, 284, 109210–109210. https://doi.org/10.1016/j.engfracmech.2023.109210. DOI: https://doi.org/10.1016/j.engfracmech.2023.109210
Ramakrishnan, S. (2022). Comparative Study on the Behavior of Fiber Reinforced Concrete. Materials Research Proceedings. https://doi.org/10.21741/9781644901953-13. DOI: https://doi.org/10.21741/9781644901953-13
Ravichandran, D., Prem, P. R., Kaliyavaradhan, S. K., & Ambily, P. S. (2022). Influence of fibers on fresh and hardened properties of Ultra High Performance Concrete (UHPC)—A review. Journal of Building Engineering, 57, 104922. https://doi.org/10.1016/j.jobe.2022.104922. DOI: https://doi.org/10.1016/j.jobe.2022.104922
Saatci, S., Sirin Cetin, F., Aloui, S., & Naseri, J. (2024). Effects of steel fiber type and ratio on the one-way bending behavior of hybrid fiber reinforced concrete thin panels. Construction & Building Materials, 411, 134190–134190. https://doi.org/10.1016/j.conbuildmat.2023.134190. DOI: https://doi.org/10.1016/j.conbuildmat.2023.134190
Shashikumara, S. R., Pramukh, N., Abhishek, R., & Nagaraj, V. K. (2023). Experimental study on the influence of polypropylene and steel fiber on flexural behaviours of high strength concrete beams. Materials Today: Proceedings, 88, 85–92. https://doi.org/10.1016/j.matpr.2023.05.020. DOI: https://doi.org/10.1016/j.matpr.2023.05.020
Solahuddin Bin Azuwa, & Bin, F. (2024). Experimental investigation and finite element analysis of reinforced concrete beams strengthened by fibre reinforced polymer composite materials : A review. Alexandria Engineering Journal /Alexandria Engineering Journal, 99, 137–167. https://doi.org/10.1016/j.aej.2024.05.017. DOI: https://doi.org/10.1016/j.aej.2024.05.017
WALCOOM. (2024). Melt Extract Stainless Steel Often Apply to Torpedo Ladle & Fire Clays. Walcoom.com. https://www.walcoom.com/pro/architecturalmesh/steel-fiber/melt-stainless-steel-fiber.html
Wang, Q., & Xu, Y. (2024). Macro-meso cracking inversion modelling of three-point bending concrete beam with random aggregates using cohesive zone model. Theoretical and Applied Fracture Mechanics, 133, 104566–104566. https://doi.org/10.1016/j.tafmec.2024.104566. DOI: https://doi.org/10.1016/j.tafmec.2024.104566
Wang, W., Zhang, C., Zhang, Z., Li, L., & Wei, J. (2024). Experimental and numerical simulation study on flexural performance of high-strength reinforced concrete beams under static loading. Structures, 63, 106482–106482. https://doi.org/10.1016/j.istruc.2024.106482. DOI: https://doi.org/10.1016/j.istruc.2024.106482
Wei, H., Huang, X., Xie, W., Jiang, X., Zhao, G., & Zhang, W. (2024). Multiscale modeling for the impact behavior of 3D angle-interlock woven composites. International Journal of Mechanical Sciences, 276, 109382–109382. https://doi.org/10.1016/j.ijmecsci.2024.109382. DOI: https://doi.org/10.1016/j.ijmecsci.2024.109382
Wu, F., Yu, Q., & Chen, X. (2022). Effects of steel fibre type and dosage on abrasion resistance of concrete against debris flow. Cement and Concrete Composites, 134, 104776. https://doi.org/10.1016/j.cemconcomp.2022.104776. DOI: https://doi.org/10.1016/j.cemconcomp.2022.104776
Yadav, D., M.H. Prashanth, & Kumar, N. (2023). Numerical study on the effect of steel fibers on fracture and size effect in concrete beams. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.690. DOI: https://doi.org/10.1016/j.matpr.2023.03.690
Yang, K., Wu, Z., Zheng, K., & Shi, J. (2024). Design and flexural behavior of steel fiber-reinforced concrete beams with regular oriented fibers and GFRP bars. Engineering Structures/Engineering Structures (Online), 309, 118073–118073. https://doi.org/10.1016/j.engstruct.2024.118073. DOI: https://doi.org/10.1016/j.engstruct.2024.118073
Zhang, P., Wang, C., Gao, Z., & Wang, F. (2023). A review on fracture properties of steel fiber reinforced concrete. Journal of Building Engineering, 67, 105975. https://doi.org/10.1016/j.jobe.2023.105975. DOI: https://doi.org/10.1016/j.jobe.2023.105975
Zhang, P., Wang, C., Guo, J., Wu, J., & Zhang, C. (2024). Production of sustainable steel fiber-reinforced rubberized concrete with enhanced mechanical properties: A state-of-the-art review. Journal of Building Engineering, 91, 109735–109735. https://doi.org/10.1016/j.jobe.2024.109735. DOI: https://doi.org/10.1016/j.jobe.2024.109735
Zhang, T., Cui, J., Chen, M., Feng, X., Jiang, X., & Chen, Q. (2023). Feasibility of utilising waste tyre steel fibres to develop sustainable engineered cementitious composites: Engineering properties, impact resistance and environmental assessment. Journal of Cleaner Production, 427, 139148. https://doi.org/10.1016/j.jclepro.2023.139148. DOI: https://doi.org/10.1016/j.jclepro.2023.139148
Zhang, W., Zhang, S., Wei, J., & Huang, Y. (2024). Flexural behavior of SFRC-NC composite beams: An experimental and numerical analytical study. Structures, 60, 105823–105823. https://doi.org/10.1016/j.istruc.2023.105823. DOI: https://doi.org/10.1016/j.istruc.2023.105823
Zheng, Y., Lv, X., Hu, S., Zhuo, J., Wan, C., & Liu, J. (2024). Mechanical properties and durability of steel fiber reinforced concrete: A review. Journal of Building Engineering, 82, 108025. https://doi.org/10.1016/j.jobe.2023.108025. DOI: https://doi.org/10.1016/j.jobe.2023.108025
Zia, A., Zhang, P., & Holly, I. (2023). Effectiveness of hybrid discarded tire/Industrial steel fibers for improving the sustainability of concrete structures. Construction and Building Materials, 378, 131226. https://doi.org/10.1016/j.conbuildmat.2023.131226. DOI: https://doi.org/10.1016/j.conbuildmat.2023.131226