Polypropylene Fibers for 3D Brace-Reinforced Concrete

Glykeria Porfyriadou

University Of Ioannina

Dimitrios Moschovas

Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece.

Dimitrios Exarchos

Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece.

Konstantinos Kolovos

Hellenic Military Academy, Department of Physical Sciences & Applications, Athens, Greece.

Theodoros Matikas

Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece.

Nikolaos E. Zafeiropoulos

Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece.

DOI: https://doi.org/10.61706/sccee1201125

Keywords: 3D Concrete Reinforcement, Discontinuous Fibres, Fibre Reinforced Concrete, Mechanical Strength, Polypropylene Fibres


Abstract

This study proposes an innovative procedure for incorporating polymer fibers into concrete with the objective of enhancing its structural performance and durability. The integration of polymer fibers into advanced composite materials is driven by two primary objectives: first, to enhance the mechanical properties of the composite, and second, to reduce the carbon footprint associated with the conventional production of concrete. This novel approach, entails not only the development of enhanced mechanical properties but also the pursuit of sustainability, thereby facilitating a reduction in the carbon footprint associated with the production of conventional concrete. The study also explores the potential of fibers, beyond mechanical properties and in acoustic emission thus expanding the areas of benefit for sustainable construction. Through a detailed experimental investigation, this work assesses the performance of polymer fibers under various stress conditions, establishing new thresholds that could inform industry standards.

Downloads

Download data is not yet available.

References

Anbuvelan, K., Khadar, M., Lakshmipathy, M., & Sathyanarayanan, K. (2007). Studies on properties of concretes containing polypropylene, steel and reengineered plastic shred fibre. Indian concrete journal, 81(4), 38-44.

Bayasi, Z., & Zeng, J. (1993). Properties of polypropylene fiber reinforced concrete. Materials Journal, 90(6), 605-610. https://doi.org/10.14359/4439 DOI: https://doi.org/10.14359/4439

Brown, A. (1955). The mechanical properties of fibers. Textile Research Journal, 25(7), 617-628. https://doi.org/10.1177/004051755502500708 DOI: https://doi.org/10.1177/004051755502500708

Chen, M., Shen, S.-L., Arulrajah, A., Wu, H.-N., Hou, D.-W., & Xu, Y.-S. (2015). Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay. Geotextiles and Geomembranes, 43(6), 515-523. https://doi.org/10.1016/j.geotexmem.2015.05.004 DOI: https://doi.org/10.1016/j.geotexmem.2015.05.004

Feng, J., Su, Y., & Qian, C. (2019). Coupled effect of PP fiber, PVA fiber and bacteria on self-healing efficiency of early-age cracks in concrete. Construction and Building Materials, 228, 116810. https://doi.org/10.1016/j.conbuildmat.2019.116810 DOI: https://doi.org/10.1016/j.conbuildmat.2019.116810

Hosseinzadeh, H., Salehi, A. M., Mehraein, M., & Asadollahfardi, G. (2023). The effects of steel, polypropylene, and high-performance macro polypropylene fibers on mechanical properties and durability of high-strength concrete. Construction and Building Materials, 386, 131589. https://doi.org/10.1016/j.conbuildmat.2023.131589 DOI: https://doi.org/10.1016/j.conbuildmat.2023.131589

Hsie, M., Tu, C., & Song, P. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering: A, 494(1-2), 153-157. https://doi.org/10.1016/j.msea.2008.05.037 DOI: https://doi.org/10.1016/j.msea.2008.05.037

Jusoh, W. A. W., Ibrahim, I. S., Sam, A. R. M., Sarbini, N. N., & Aizon, N. H. (2015). MECHANICAL PROPERTIES OF HYBRID FIBRE REINFORCED COMPOSITE CONCRETE (HYFRCC). Malaysian Journal of Civil Engineering, 27(3).

Kakooei, S., Akil, H. M., Jamshidi, M., & Rouhi, J. (2012). The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction and Building Materials, 27(1), 73-77. https://doi.org/10.1016/j.conbuildmat.2011.08.015 DOI: https://doi.org/10.1016/j.conbuildmat.2011.08.015

Karimi, N., & Mostofinejad, D. (2020). Bacillus subtilis bacteria used in fiber reinforced concrete and their effects on concrete penetrability. Construction and Building Materials, 230, 117051. https://doi.org/10.1016/j.conbuildmat.2019.117051 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117051

Kurtz, S., & Balaguru, P. (2000). Postcrack creep of polymeric fiber-reinforced concrete in flexure. Cement and Concrete Research, 30(2), 183-190. https://doi.org/10.1016/S0008-8846(99)00228-8 DOI: https://doi.org/10.1016/S0008-8846(99)00228-8

Lakshmi, A., Pandit, P., Bhagwat, Y., & Nayak, G. (2022). A review on efficiency of polypropylene fiber-reinforced concrete. Sustainability Trends and Challenges in Civil Engineering: Select Proceedings of CTCS 2020, 799-812. https://doi.org/10.1007/978-981-16-2826-9_50 DOI: https://doi.org/10.1007/978-981-16-2826-9_50

Latifi, M. R., Biricik, Ö., & Mardani Aghabaglou, A. (2022). Effect of the addition of polypropylene fiber on concrete properties. Journal of Adhesion Science and Technology, 36(4), 345-369. https://doi.org/10.1080/01694243.2021.1922221 DOI: https://doi.org/10.1080/01694243.2021.1922221

Manolis, G., Gareis, P., Tsonos, A., & Neal, J. (1997). Dynamic properties of polypropylene fiber-reinforced concrete slabs. Cement and Concrete Composites, 19(4), 341-349. https://doi.org/10.1016/S0958-9465(97)00030-9 DOI: https://doi.org/10.1016/S0958-9465(97)00030-9

Nandagiri, L., Narasimhan, M. C., Marathe, S., & Dinesh, S. V. (Eds.). (2022). Sustainability Trends and Challenges in Civil Engineering (Vol. 162). Springer Singapore. https://doi.org/10.1007/978-981-16-2826-9 DOI: https://doi.org/10.1007/978-981-16-2826-9

Naser, M. Z., Hawileh, R. A., & Abdalla, J. (2019). Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Engineering Structures, 198, 109542. https://doi.org/10.1016/j.engstruct.2019.109542 DOI: https://doi.org/10.1016/j.engstruct.2019.109542

Neville, A. (2003). Neville on concrete. ACI, Farmington Hills, Mich, USA.

Patel, M. J., & Kulkarni, S. (2013). Effect of polypropylene fiber on the high strength concrete. Journal of information, knowledge and research in civil engineering, 2(2), 125-129.

Patel, P. A., Desai, A. K., & Desai, J. A. (2012). Evaluation of engineering properties for polypropylene fiber reinforced concrete. International Journal of Advanced Engineering Technology, 3(1), 42-45.

https://www.researchgate.net/publication/352934230_Evaluation_of_engineering_properties_for_polypropylene_fibre_reinforced_concrete

Qian, C., & Stroeven, P. (2000). Fracture properties of concrete reinforced with steel–polypropylene hybrid fibers. Cement and Concrete Composites, 22(5), 343-351. https://doi.org/10.1016/S0958-9465(00)00033-0 DOI: https://doi.org/10.1016/S0958-9465(00)00033-0

Ramujee, K. (2013). Strength properties of polypropylene fiber reinforced concrete. International journal of innovative research in science, engineering and technology, 2(8), 3409-3413.

Selvi, M. T., & Thandavamoorthy, T. (2013). Studies on the properties of steel and polypropylene fibre reinforced concrete without any admixture. International Journal of Engineering and Innovative Technology (IJEIT), 3(1), 411-416.

Shanbara, H. K., Musa, S. S., & Dulaimi, A. (2020). The Effect of polypropylene fibres on the tensile performance of asphalt mixtures for road pavements. IOP Conference Series: Materials Science and Engineering, DOI: https://doi.org/10.1088/1757-899X/888/1/012082

Shanbara, H. K., Musa, S. S., & Dulaimi, A. (2020). The Effect of polypropylene fibres on the tensile performance of asphalt mixtures for road pavements. IOP Conference Series: Materials Science and Engineering, 888(1), 012082. https://doi.org/10.1088/1757-899X/888/1/012082 DOI: https://doi.org/10.1088/1757-899X/888/1/012082

Thirumurugan, S., & Sivakumar, A. (2013). Compressive strength index of crimped polypropylene fibers in high strength cementitious matrix. World Applied Sciences Journal, 24(6), 698-702.

Wong, R., Ma, S., Wong, R., & Chau, K. T. (2007). Shear strength components of concrete under direct shearing. Cement and Concrete Research, 37(8), 1248-1256. https://doi.org/10.1016/j.cemconres.2007.02.021 DOI: https://doi.org/10.1016/j.cemconres.2007.02.021

Wu, M., Johannesson, B., & Geiker, M. (2012). A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Construction and Building Materials, 28(1), 571-583. https://doi.org/10.1016/j.conbuildmat.2011.08.086 DOI: https://doi.org/10.1016/j.conbuildmat.2011.08.086

Wu, Y. (2002). Flexural strength and behavior of polypropylene fiber reinforced concrete beams. Journal of Wuhan University of Technology-Mater. Sci. Ed., 17(2), 54-57. https://doi.org/10.1007/BF02832623 DOI: https://doi.org/10.1007/BF02832623

Yao, W., & Zhong, W. (2007). Effect of polypropylene fibers on the long-term tensile strength of concrete. Journal of Wuhan University of Technology-Mater. Sci. Ed., 22(1), 52-55. https://doi.org/10.1007/s11595-005-1052-z DOI: https://doi.org/10.1007/s11595-005-1052-z

Yin, Y., Qiao, Y., & Hu, S. (2019). Four-point bending tests for the fracture properties of concrete. Engineering Fracture Mechanics, 211, 371-381. https://doi.org/10.1016/j.engfracmech.2019.03.004 DOI: https://doi.org/10.1016/j.engfracmech.2019.03.004