Polypropylene Fibers for 3D Brace-Reinforced Concrete
Glykeria Porfyriadou
University Of Ioannina
Dimitrios Moschovas
Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece.
Dimitrios Exarchos
Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece.
Konstantinos Kolovos
Hellenic Military Academy, Department of Physical Sciences & Applications, Athens, Greece.
Theodoros Matikas
Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece.
Nikolaos E. Zafeiropoulos
Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece.
DOI: https://doi.org/10.61706/sccee1201125
Keywords: 3D Concrete Reinforcement, Discontinuous Fibres, Fibre Reinforced Concrete, Mechanical Strength, Polypropylene Fibres
Abstract
This study proposes an innovative procedure for incorporating polymer fibers into concrete with the objective of enhancing its structural performance and durability. The integration of polymer fibers into advanced composite materials is driven by two primary objectives: first, to enhance the mechanical properties of the composite, and second, to reduce the carbon footprint associated with the conventional production of concrete. This novel approach, entails not only the development of enhanced mechanical properties but also the pursuit of sustainability, thereby facilitating a reduction in the carbon footprint associated with the production of conventional concrete. The study also explores the potential of fibers, beyond mechanical properties and in acoustic emission thus expanding the areas of benefit for sustainable construction. Through a detailed experimental investigation, this work assesses the performance of polymer fibers under various stress conditions, establishing new thresholds that could inform industry standards.
Downloads
References
Anbuvelan, K., Khadar, M., Lakshmipathy, M., & Sathyanarayanan, K. (2007). Studies on properties of concretes containing polypropylene, steel and reengineered plastic shred fibre. Indian concrete journal, 81(4), 38-44.
Bayasi, Z., & Zeng, J. (1993). Properties of polypropylene fiber reinforced concrete. Materials Journal, 90(6), 605-610. https://doi.org/10.14359/4439 DOI: https://doi.org/10.14359/4439
Brown, A. (1955). The mechanical properties of fibers. Textile Research Journal, 25(7), 617-628. https://doi.org/10.1177/004051755502500708 DOI: https://doi.org/10.1177/004051755502500708
Chen, M., Shen, S.-L., Arulrajah, A., Wu, H.-N., Hou, D.-W., & Xu, Y.-S. (2015). Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay. Geotextiles and Geomembranes, 43(6), 515-523. https://doi.org/10.1016/j.geotexmem.2015.05.004 DOI: https://doi.org/10.1016/j.geotexmem.2015.05.004
Feng, J., Su, Y., & Qian, C. (2019). Coupled effect of PP fiber, PVA fiber and bacteria on self-healing efficiency of early-age cracks in concrete. Construction and Building Materials, 228, 116810. https://doi.org/10.1016/j.conbuildmat.2019.116810 DOI: https://doi.org/10.1016/j.conbuildmat.2019.116810
Hosseinzadeh, H., Salehi, A. M., Mehraein, M., & Asadollahfardi, G. (2023). The effects of steel, polypropylene, and high-performance macro polypropylene fibers on mechanical properties and durability of high-strength concrete. Construction and Building Materials, 386, 131589. https://doi.org/10.1016/j.conbuildmat.2023.131589 DOI: https://doi.org/10.1016/j.conbuildmat.2023.131589
Hsie, M., Tu, C., & Song, P. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering: A, 494(1-2), 153-157. https://doi.org/10.1016/j.msea.2008.05.037 DOI: https://doi.org/10.1016/j.msea.2008.05.037
Jusoh, W. A. W., Ibrahim, I. S., Sam, A. R. M., Sarbini, N. N., & Aizon, N. H. (2015). MECHANICAL PROPERTIES OF HYBRID FIBRE REINFORCED COMPOSITE CONCRETE (HYFRCC). Malaysian Journal of Civil Engineering, 27(3).
Kakooei, S., Akil, H. M., Jamshidi, M., & Rouhi, J. (2012). The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction and Building Materials, 27(1), 73-77. https://doi.org/10.1016/j.conbuildmat.2011.08.015 DOI: https://doi.org/10.1016/j.conbuildmat.2011.08.015
Karimi, N., & Mostofinejad, D. (2020). Bacillus subtilis bacteria used in fiber reinforced concrete and their effects on concrete penetrability. Construction and Building Materials, 230, 117051. https://doi.org/10.1016/j.conbuildmat.2019.117051 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117051
Kurtz, S., & Balaguru, P. (2000). Postcrack creep of polymeric fiber-reinforced concrete in flexure. Cement and Concrete Research, 30(2), 183-190. https://doi.org/10.1016/S0008-8846(99)00228-8 DOI: https://doi.org/10.1016/S0008-8846(99)00228-8
Lakshmi, A., Pandit, P., Bhagwat, Y., & Nayak, G. (2022). A review on efficiency of polypropylene fiber-reinforced concrete. Sustainability Trends and Challenges in Civil Engineering: Select Proceedings of CTCS 2020, 799-812. https://doi.org/10.1007/978-981-16-2826-9_50 DOI: https://doi.org/10.1007/978-981-16-2826-9_50
Latifi, M. R., Biricik, Ö., & Mardani Aghabaglou, A. (2022). Effect of the addition of polypropylene fiber on concrete properties. Journal of Adhesion Science and Technology, 36(4), 345-369. https://doi.org/10.1080/01694243.2021.1922221 DOI: https://doi.org/10.1080/01694243.2021.1922221
Manolis, G., Gareis, P., Tsonos, A., & Neal, J. (1997). Dynamic properties of polypropylene fiber-reinforced concrete slabs. Cement and Concrete Composites, 19(4), 341-349. https://doi.org/10.1016/S0958-9465(97)00030-9 DOI: https://doi.org/10.1016/S0958-9465(97)00030-9
Nandagiri, L., Narasimhan, M. C., Marathe, S., & Dinesh, S. V. (Eds.). (2022). Sustainability Trends and Challenges in Civil Engineering (Vol. 162). Springer Singapore. https://doi.org/10.1007/978-981-16-2826-9 DOI: https://doi.org/10.1007/978-981-16-2826-9
Naser, M. Z., Hawileh, R. A., & Abdalla, J. (2019). Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Engineering Structures, 198, 109542. https://doi.org/10.1016/j.engstruct.2019.109542 DOI: https://doi.org/10.1016/j.engstruct.2019.109542
Neville, A. (2003). Neville on concrete. ACI, Farmington Hills, Mich, USA.
Patel, M. J., & Kulkarni, S. (2013). Effect of polypropylene fiber on the high strength concrete. Journal of information, knowledge and research in civil engineering, 2(2), 125-129.
Patel, P. A., Desai, A. K., & Desai, J. A. (2012). Evaluation of engineering properties for polypropylene fiber reinforced concrete. International Journal of Advanced Engineering Technology, 3(1), 42-45.
Qian, C., & Stroeven, P. (2000). Fracture properties of concrete reinforced with steel–polypropylene hybrid fibers. Cement and Concrete Composites, 22(5), 343-351. https://doi.org/10.1016/S0958-9465(00)00033-0 DOI: https://doi.org/10.1016/S0958-9465(00)00033-0
Ramujee, K. (2013). Strength properties of polypropylene fiber reinforced concrete. International journal of innovative research in science, engineering and technology, 2(8), 3409-3413.
Selvi, M. T., & Thandavamoorthy, T. (2013). Studies on the properties of steel and polypropylene fibre reinforced concrete without any admixture. International Journal of Engineering and Innovative Technology (IJEIT), 3(1), 411-416.
Shanbara, H. K., Musa, S. S., & Dulaimi, A. (2020). The Effect of polypropylene fibres on the tensile performance of asphalt mixtures for road pavements. IOP Conference Series: Materials Science and Engineering, DOI: https://doi.org/10.1088/1757-899X/888/1/012082
Shanbara, H. K., Musa, S. S., & Dulaimi, A. (2020). The Effect of polypropylene fibres on the tensile performance of asphalt mixtures for road pavements. IOP Conference Series: Materials Science and Engineering, 888(1), 012082. https://doi.org/10.1088/1757-899X/888/1/012082 DOI: https://doi.org/10.1088/1757-899X/888/1/012082
Thirumurugan, S., & Sivakumar, A. (2013). Compressive strength index of crimped polypropylene fibers in high strength cementitious matrix. World Applied Sciences Journal, 24(6), 698-702.
Wong, R., Ma, S., Wong, R., & Chau, K. T. (2007). Shear strength components of concrete under direct shearing. Cement and Concrete Research, 37(8), 1248-1256. https://doi.org/10.1016/j.cemconres.2007.02.021 DOI: https://doi.org/10.1016/j.cemconres.2007.02.021
Wu, M., Johannesson, B., & Geiker, M. (2012). A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Construction and Building Materials, 28(1), 571-583. https://doi.org/10.1016/j.conbuildmat.2011.08.086 DOI: https://doi.org/10.1016/j.conbuildmat.2011.08.086
Wu, Y. (2002). Flexural strength and behavior of polypropylene fiber reinforced concrete beams. Journal of Wuhan University of Technology-Mater. Sci. Ed., 17(2), 54-57. https://doi.org/10.1007/BF02832623 DOI: https://doi.org/10.1007/BF02832623
Yao, W., & Zhong, W. (2007). Effect of polypropylene fibers on the long-term tensile strength of concrete. Journal of Wuhan University of Technology-Mater. Sci. Ed., 22(1), 52-55. https://doi.org/10.1007/s11595-005-1052-z DOI: https://doi.org/10.1007/s11595-005-1052-z
Yin, Y., Qiao, Y., & Hu, S. (2019). Four-point bending tests for the fracture properties of concrete. Engineering Fracture Mechanics, 211, 371-381. https://doi.org/10.1016/j.engfracmech.2019.03.004 DOI: https://doi.org/10.1016/j.engfracmech.2019.03.004