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Abstract  

 

This study examines freshwater utilization trends in Syria from 2000 to 2022, focusing on agricultural, 

industrial, and domestic consumption while analyzing changes in per capita water availability and 

identifying the optimal usage ratio to bridge the water gap using artificial intelligence (AI) models. A 

descriptive analytical approach was employed to estimate time trend equations and annual growth rates 

based on World Bank data, while a multi-layer feed-forward neural network was used to predict the 

water gap. Findings indicate an overall increase in freshwater consumption for agriculture and 

domestic purposes, each growing at an annual rate of 0.006% (0.38%), whereas industrial water use 

declined by 0.07% annually. The per capita freshwater share exhibited a steady decline at -1.26% per 

year, with a simultaneous increase in the gap between water availability and the poverty threshold by 

0.85% annually. AI-based analysis revealed that domestic water consumption has the greatest impact 

on widening the water gap, and an optimal reduction of 8.19% in total water use was identified as 

necessary to mitigate this issue. These findings highlight the need for strategic water management 

policies to ensure sustainable freshwater distribution across sectors. 
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Introduction 

It is increasingly evident that the global 

community is recognizing the urgent need for a 

comprehensive reassessment of the distribution, 

management, and utilization of freshwater resources. 

Despite significant technological advancements and the 

proliferation of information in the modern era, millions 

of individuals continue to succumb annually to 

preventable waterborne diseases, while hundreds of 

millions more endure severe health conditions. 

Notwithstanding substantial investments and efforts, by 

the close of the twentieth century, approximately 2.4 

billion people—surpassing the global population of 

1940—remained without access to sanitation services 

comparable to those available to the majority of citizens 

in ancient Rome. As noted by Panjabi (2014), more than 

one billion individuals still lack access to safe and 

sufficient drinking water. 

Human activities have had a profound impact on 

the Earth as our collective habitat. In particular, land use 

change and management affect hydrology, which in 

turn determines flood risk, water resources (for human 

and environmental needs), and pollutant transport and 

dilution. It is becoming increasingly evident that land 

and water management are inextricably linked (Wheater 

& Evans, 2009). 

The combined impact of rising temperatures and 

prolonged drought conditions over the past decade in 

California, along with court-imposed restrictions on 

water allocations in the Sacramento River Delta, has 

significantly reduced the availability of water resources 

in Southern California. In response to these challenges, 

water agencies have implemented a range of 

conservation measures and irrigation regulations, with a 

primary emphasis on restricting outdoor water use 

(Lund, 2016). 

The City of Los Angeles, the most populous in the 

United States and the largest among the 88 

municipalities in Los Angeles County, has enacted a 

series of initiatives aimed at reducing residential water 

consumption. Between 2008 and 2010, three successive 

phases of water restrictions were introduced to curb 

usage and promote conservation. The first phase, which 

was voluntary, commenced in FY 2008. The second 

phase, which was mandatory, commenced in FY 2009. 

The third and final phase, which was mandatory and 

combined with increased prices and decreased total 

household allotments, commenced in FY 2010 (Mini et 

al., 2015).  

The integration of artificial intelligence (AI) has 

the potential to enhance the identification of complex 

patterns within extensive datasets related to dynamic 

water distribution. This is accomplished through the 

continuous incorporation of fundamental scientific 

processes at a micro level. The synergy between these 

advanced technologies can illustrate how public trust 

may be strengthened through the implementation of 

automated and conditional "smart contracts" for water 

usage, based on secure and immutable data. 

Furthermore, it plays a vital role in enhancing the 

accuracy and validation of local water usage data, a key 

element in global ecosystem changes studies and data-

driven decision-making. By leveraging a decentralized 

intelligent framework for global water governance, 

blockchain-based security protocols can be integrated 

with AI algorithms trained on real-time water sensing 

data. In the realm of remote water distribution, this 

technological synergy offers substantial benefits in 

optimizing water availability, improving efficiency, and 

identifying scarcity trends. Such advancements 

facilitate the equitable management of multi-source 

water resources, particularly in the face of climate 

change (Lin et al., 2018). 

The objective of sustainable water resources 

management is to maintain the ecological, economic 

and hydrological integrity of the current society and to 

ensure the viability of future prospects. The application 

of artificial intelligence methods in urban water 

resource planning is largely due to their exceptional 

capacity for reasoning, adaptability, modelling and 

forecasting of water demand (Xiang et al., 2021).  

An advanced artificial neural network (ANN) 

framework, integrating a constriction coefficient-based 

particle swarm optimization and gravitational chaotic 

search algorithm (CPSOCGSA), was employed to 

predict monthly salinity levels. The model was 

developed and validated using historical monthly data 

on total dissolved solids (TDS) and electrical 

conductivity (EC) of the Euphrates River at Musayyib 

and Babylon, alongside relevant climatic variables from 

2010 to 2019. To evaluate its performance, the 

CPSOCGSA-ANN approach was compared with 

alternative optimization techniques, including the slime 

mold algorithm (SMA-ANN), particle swarm 

optimization (PSO-ANN), and the multi-verse 

optimizer (MVO-ANN). Results demonstrated that data 

preprocessing significantly enhanced data quality and 

facilitated the identification of the optimal forecasting 

scenario. Moreover, the CPSOCGSA-ANN model 

outperformed the comparative methods across multiple 

statistical performance metrics. The proposed approach 

demonstrated high predictive accuracy in modeling 

TDS and EC time series, yielding R² values of 0.99 and 

0.97, respectively, and scatter index (SI) values of 0.003 

for both parameters (Khudhair et al., 2022). 

An advanced intelligent management system has 

been developed to address water scarcity in Palestine, 

focusing on four key aspects: water scarcity assessment, 

protection of traditional water resources, 

implementation of rainwater harvesting (RWH), and the 
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application of dynamic intelligent water management 

strategies. The smart RWH system has demonstrated 

the capability to fulfill approximately 41% of household 

water demands. Moreover, the smart dual water system 

has exhibited greater reliability in meeting water needs 

compared to the standalone smart RWH system. 

Through the integration of dynamic management 

strategies and an innovative supply framework, the 

smart dual system has proven its effectiveness in 

mitigating water scarcity comprehensively across all 

elevation levels within the study area. Additionally, the 

use of a smaller storage tank has been identified as a 

critical factor in optimizing system performance, with 

potential implications for the social and economic 

development of the region (Judeh, 2022). 

In the United States, increasing urban populations, 

rising living standards, limited expansion of new water 

sources, and the depletion of existing supplies have 

created a growing imbalance where the demand for 

treated municipal water surpasses available resources. 

The amount of water used for irrigating residential 

urban landscapes is influenced by various factors, 

including landscape type, management practices, and 

regional geographic conditions. In general, however, 

landscape irrigation can account for a significant 

proportion of household water use, with figures ranging 

from 40% to 70%. It is therefore recommended that the 

primary focus of water conservation efforts be the 

efficient use of irrigation water in urban landscapes. 

Furthermore, plants in typical residential landscapes are 

frequently irrigated with greater quantities of water than 

is necessary to sustain essential ecosystem functions, 

including carbon regulation, climate control, and the 

maintenance of aesthetic appeal (Hilaire et al., 2008). 

Effective water demand management is essential 

for water utilities, as they play a critical role in 

delivering safe drinking water from sources to end users 

through distribution networks. To ensure both current 

and future system performance, utilities must make 

informed decisions regarding water distribution. In this 

context, data-driven approaches, including artificial 

intelligence models, can be utilized to predict water 

demand, enabling the development of advanced tools to 

enhance overall water management (Zanfei et al., 

2023). 

Jafar et al. (2023) studied the surface water quality 

of Lake Seine in the Latakia Governorate using multiple 

linear regression (MLR) and machine learning (ML) 

models to predict the Water Quality Index (WQI). Their 

research analyzed water samples collected from a key 

drinking water source in Latakia, Syria, during 2021–

2022, assessing water quality through statistical 

performance metrics such as the coefficient of 

determination (R²) and root mean square error (RMSE). 

The findings demonstrated that the MLR model, along 

with three ML techniques—linear regression (LR), least 

angle regression (LAR), and Bayesian ridge (BR)—

exhibited strong predictive accuracy in estimating WQI. 

The MLR model achieved an R² of 0.999 with an RMSE 

of 0.149, while the ML models demonstrated near-

perfect prediction accuracy, attaining an R² of 1.0 and 

an RMSE close to zero. These results highlight the 

effectiveness of both statistical and ML-based 

approaches in water quality prediction, offering a 

reliable framework for enhancing water management 

strategies and ensuring sustainable water resource 

planning. 

Chamizo-Checa et al. (2020) conducted a 

comprehensive study on the Mezquital Valley in 

Mexico, utilizing the Water Evaluation and Planning 

System (WEAP) to model water balance scenarios from 

2005 to 2050. Their research assessed the impacts of 

climate change on water availability, considering both 

steady-state and transient scenarios influenced by 

projected climate perturbations. The study highlighted 

the region's reliance on untreated wastewater from 

Mexico City for agricultural irrigation and examined the 

implications of implementing wastewater treatment and 

advanced irrigation techniques. Findings indicated that 

while measures like drip irrigation could reduce 

agricultural water demand by 42%, they might not 

suffice to meet downstream hydroelectric requirements, 

especially with anticipated reductions in imported 

wastewater. This underscores the necessity for 

integrated water resource management strategies to 

address future water scarcity challenges in the region. 

Krishnan et al. (2022) highlight the growing 

urgency of effective water management amid the 

escalating global water crisis, emphasizing the need for 

advanced harvesting, recycling, and distribution 

strategies. As population density increases, intelligent 

water management systems become essential for 

optimizing resource utilization, conserving water, and 

maintaining quality standards. Their study explores key 

advancements in wastewater recycling, rainwater 

harvesting, and irrigation management through the 

application of Artificial Intelligence (AI) and Deep 

Learning (DL) within an Internet of Things (IoT) 

framework. Given the complexity of water management 

data, adaptable AI-driven models are necessary to 

provide integrated solutions across various sectors. 

Through case studies and statistical analyses, the 

research presents a structured framework for enhancing 

decision-making in water resource management, 

demonstrating the transformative potential of AI and 

IoT in addressing global water challenges. 

Fu et al. (2022) explored the transformative impact 

of deep learning techniques on urban water system 

planning and management, emphasizing their potential 

to revolutionize economies, environments, and societies 

worldwide. While deep learning has been applied across 

various aspects of water management, a comprehensive 
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review of its current applications and future potential 

remains limited. To address this gap, the study 

examines key areas where deep learning is being 

utilized, including water demand forecasting, leakage 

detection, contamination assessment, sewer defect 

evaluation, wastewater system state prediction, asset 

monitoring, and urban flood modeling. Despite its 

promise, deep learning applications in urban water 

management are still in their early stages, with most 

studies relying on benchmark networks, synthetic 

datasets, or pilot systems, and only limited real-world 

implementation. Among these applications, leakage 

detection has shown the most progress in practical 

deployment. The study further identifies five critical 

research challenges that must be addressed to advance 

deep learning in this field: data privacy, algorithm 

development, explainability and trustworthiness, multi-

agent systems, and digital twins. Overcoming these 

challenges is expected to drive greater intelligence and 

autonomy in urban water systems, accelerating 

innovation and digital transformation within the global 

water sector. By highlighting these key areas, the study 

encourages further research and development, 

leveraging deep learning to enhance sustainable water 

management and optimize resource efficiency. 

Vallejo-Gómez et al. (2023) conducted a 

systematic review focusing on smart irrigation systems 

that integrate artificial intelligence (AI) and Internet of 

Things (IoT) technologies in both urban and rural 

agricultural settings. The study analyzed 170 articles, 

identifying key technologies such as fuzzy logic, neural 

networks, and machine learning as pivotal in enhancing 

irrigation efficiency. These technologies enable real-

time monitoring and precise control of irrigation 

processes, optimizing water usage and improving crop 

yields. The review highlights the potential of AI and IoT 

in transforming traditional irrigation practices, 

emphasizing their role in promoting sustainable 

agriculture through efficient resource management. 

Jung et al. (2021) developed an artificial neural 

network (ANN)-based model to predict surface water 

quality in the Nam River watershed, South Korea. By 

integrating meteorological data and water quality 

parameters, the study aimed to enhance the accuracy of 

water quality forecasts. The ANN model demonstrated 

high predictive performance, with coefficients of 

determination (R²) ranging from 0.810 to 0.929 for 

dissolved oxygen (DO) and 0.671 to 0.863 for 

biochemical oxygen demand (BOD₅). The results 

underscore the efficacy of ANN models in capturing the 

nonlinear relationships between meteorological factors 

and water quality indicators, offering a reliable 

approach for water quality management and decision-

making processes. 

Methods 

The study was conducted at the national level in 

the Syrian Arab Republic, situated on the eastern coast 

of the Mediterranean Sea, within the geographical 

coordinates of 35° to 42° east longitude and 32° to 37° 

north latitude. Covering the period from 2000 to 2022, 

the research utilized statistical data from the Central 

Bureau of Statistics on annual freshwater withdrawals 

for agricultural, industrial, and domestic purposes, as 

well as per capita freshwater availability. The study 

analyzed key variables, with agricultural, industrial, and 

domestic water usage serving as independent variables, 

while the water gap was identified as the dependent 

variable. A descriptive analytical approach was 

employed to examine the trends in freshwater utilization 

over time, applying mathematical equations to assess 

the disparity between per capita freshwater availability 

and the water poverty threshold. Additionally, artificial 

intelligence (AI) models were integrated to predict the 

future water gap for the period 2024–2030, utilizing a 

neural network, specifically a perceptron model, to 

enhance forecasting accuracy and support sustainable 

water resource planning. 

Results and Discussions 

The Evolution of Water Use for Agricultural 

Purposes 

The evolution of freshwater utilization in 

agriculture has been extensively studied, revealing 

notable fluctuations over time. In 2000, the mean annual 

volume of water withdrawn for agricultural purposes 

peaked at approximately 761,541.07 cubic meters, 

before declining to 749,889.64 cubic meters in 2007. 

Following this decline, agricultural water consumption 

exhibited a gradual increase until 2022. Despite the fact 

that certain agricultural lands in Syria remained 

unutilized between 2012 and 2016 due to emergency 

conditions, the overall rate of water use for agricultural 

purposes remained stable. This stability may be 

attributed to the more efficient utilization of cultivated 

land and a strategic emphasis on crops with higher water 

demands in regions with secure water resources. The 

general trend line equation for the development of 

agricultural water use indicates a consistent upward 

trajectory between 2000 and 2022, with an average 

annual increase of 0.06%. The estimated trend equation 

is presented in Table 1, while Figure 1 provides a 

visual representation of these trends. 

The Evolution of Water Use for Industrial Purposes 

The study analyzed the evolution of freshwater 

utilization for industrial purposes in Syria from 2000 to 

2022, as depicted in Figure 2. Industrial water 

withdrawal peaked in 2002 at approximately 33,583.54 

m³ before declining to its lowest level in 2006 at around 

31,013.37 m³, followed by a continued gradual decrease 
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until 2022. Despite the economic and infrastructural 

challenges faced between 2012 and 2016, industrial 

water use remained relatively stable due to a shift in 

focus toward water-intensive industries such as 

chemical and textile manufacturing, which offset 

production declines in other sectors. The general trend 

line equation for industrial water use, as presented in 

Table 2, indicates an overall downward trajectory, with 

an average annual decrease of 0.07%. This decline is 

largely attributed to the impact of war conditions that 

have prevailed throughout the study period.

 

 
Figure 1. Annual Freshwater Withdrawals for Agricultural Purposes (m³) in Syria (2000–2022) 

 

Table 1. General Trend Equation for the Development of Agricultural Water Use in Syria (2000–2022) 

General Trend Equation R2 F Growth Rate% 

Ln Y = 13.52 + 0.01/t 

(0.00)**      (0.00)** 

0.83 102.30** 0.06 

 
Figure 2. Annual Freshwater Withdrawals for Industrial Purposes (m³) in Syria (2000–2022) 

 

Table 2. General Trend Equation for the Development of Industrial Water Use in Syria (2000–2022) 

General Trend Equation R2 F Growth Rate% 

Ln Y = 10.37 + 0.22/t 

(0.00)**      (0.00)** 

0.70 

 

 

42.48** -0.07 
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The Evolution of Water Use for Domestic Purposes 

The study examined the evolution of freshwater 

utilization for domestic purposes in Syria from 2000 to 

2022, as depicted in Figure 3. The mean annual volume 

of water withdrawn for domestic use peaked in 2007 at 

approximately 75,391.62 m³ and has since shown a 

gradual upward trend through 2022. The general trend 

line equation for domestic water consumption, 

presented in Table 3, indicates a consistent increase 

over the study period, with an average annual growth 

rate of 0.38%. This steady rise reflects the growing 

demand for freshwater in residential sectors, driven by 

population growth and urban expansion. 

The Evolution of Syria’s Per Capita Share of Fresh 

Water 

The study analyzed the evolution of per capita 

freshwater availability in Syria from 2000 to 2022, as 

illustrated in Figure 4. In 2000, the per capita share of 

freshwater peaked at approximately 460.11 cubic 

meters before steadily declining to its lowest recorded 

value of 313.76 cubic meters in 2013 (Central Bureau 

of Statistics). To assess water scarcity, the discrepancy 

between per capita freshwater availability and the 

United Nations-defined water poverty threshold of 

1,000 cubic meters per person per year was calculated. 

The water gap was found to be at its maximum in 2013, 

reaching approximately 686.24 cubic meters, while the 

smallest gap was recorded in 2000 at around 539.89 

cubic meters, as shown in Figure 5. The estimated 

general trend line equation, presented in Table 4, 

illustrates the long-term trajectory of per capita 

freshwater availability and its deviation from the water 

poverty threshold. The analysis indicates a persistent 

decline in Syria’s per capita freshwater share, with an 

annual reduction rate of -1.26%, while the water gap has 

shown a steady increase at a rate of 0.85% per year over 

the study period. These trends underscore the growing 

freshwater scarcity in Syria, emphasizing the urgent 

need for strategic water management interventions. 

Building a Predictive Model for the Water Gap 

Using a Neural Network (Perceptron Network) 

The study utilized a neural network model to 

analyze the relationship between water consumption for 

agricultural, industrial, and domestic purposes 

(independent variables) and changes in the water gap 

(dependent variable). Time series data spanning 23 

years were used to train and test the network, as detailed 

in Table 5. The training phase was conducted using 19 

years of data, achieving an accuracy rate of 82.6%, 

while the testing phase, based on 4 years of data, yielded 

an accuracy rate of 17.4%. The selected neural network 

architecture consisted of three layers: an input layer, a 

processing layer, and an output layer. The input layer 

comprised three cells, corresponding to the three 

independent variables, while the output layer contained 

a single cell representing the dependent variable. As 

shown in Table 6, the processing layer included three 

computational units, facilitating the network's capacity 

to model complex relationships between water usage 

and the evolving water gap.

 

 
Figure 3. Trends in Freshwater Use for Domestic Purposes in Syria (2000–2022) 

 

Table 3. General Trend Equation Depicting the Development of Domestic Water Use in Syria (2000–2022) 

General Trend Equation R2 F Growth Rate% 

Ln Y = 11.23 + 0.09/t 

(0.00)**      (0.00)** 

0.84 116.84** 0.38 
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Figure 4. Evolution of Per Capita Freshwater Availability in Syria 

 
Figure 5. Water Gap Between Per Capita Water Availability and the Water Poverty Threshold in Syria (2000–2022) 

 

Table 4. General Trend Equation for the Development of Per Capita Freshwater Availability and the Gap Relative to the Water 

Poverty Threshold in Syria (2000–2022) 

Indicator General Trend Equation R2 F Growth Rate% 

Per Capita Share 
Y= 490.69 – 20.28 t + 0.66 t2 

(0.00)**   (0.00)**   (0.00)** 

0.83 50.1** -1.26 

Water Gap 
Y= 509.30 + 20.28 t + 0.66 t2 

(0.00)**   (0.00)**   (0.00)** 

0.83 50.4** 0.85 

 

Table 5. Overview of the Data Processing Workflow in the Neural Network Model 

Case Processing Summary 

 N Percent 

Sample 
Training 19 82.6% 

Testing 4 17.4% 

Valid 23 100.0% 

Excluded 0  

Total 23  
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Table 6. Specifications of the Neural Network Model Utilized. 

Network Information 

Input Layer 

Covariates 

1 Fresh water for agricultural purposes 

2 Fresh water for industrial purposes 

3 Fresh water for domestic purposes 

Number of Unitsa 3 

Rescaling Method for Covariates Standardized 

Hidden Layer(s) 

Number of Hidden Layers 1 

Number of Units in Hidden Layer 1a 3 

Activation Function Hyperbolic tangent 

Output Layer 

Dependent Variables 1 Water gap 

Number of Units 1 

Rescaling Method for Scale Dependents Standardized 

Activation Function Identity 

Error Function Sum of Squares 

a. Excluding the bias unit 

The hyperbolic function, otherwise known as the 

hyperbolic tangent, was utilized as an activation 

function within the hidden layer. The term “hyperbolic” 

is derived from the function's derivation from the 

hyperbolic function itself. Additionally, the function 

exhibits properties analogous to those observed in 

trigonometric functions, as evidenced by the following 

relationship: 

 

Where y: dependent variable, c: independent 

variables, Bias: bias parameter 

The identity function (also known as the neutral or 

identical function) was employed in the output layer. 

This is a function whereby each element is associated 

with itself, or the domain and the corresponding domain 

are the same set. This is expressed by the following 

relationship: 

 

Figure 6 illustrates the structural design of a neural 

network, which is composed of three interconnected 

layers: the input layer, the hidden layer, and the output 

layer. The network's architecture allows for one or more 

hidden layers positioned between the input and output 

layers, with each neuron in one layer fully connected to 

every neuron in the subsequent layer. However, neurons 

within the same layer remain unconnected. Data from 

the time series are first introduced through the input 

layer, processed within the hidden layer, and ultimately 

transformed into predicted continuous values in the 

output layer. 

In this process, input values are multiplied by 

assigned weights—predefined numerical parameters—

and the resulting weighted sums are aggregated to 

produce a single value. This value is then processed 

through an activation function, which determines the 

transformation of input signals. In this study, a 

hyperbolic function was utilized as the activation 

function within the hidden layer, while the identity 

function was applied in the output layer, as illustrated in 

Figure 6. This configuration enhances the network's 

ability to model complex relationships and optimize 

predictive accuracy. 

The diagram illustrates the configuration of the 

neural network and the interconnections between its 

units, which represent the pathways through which the 

network is fed with information. 

Table 7 presents a summary of the neural network 

model employed, along with the sum of squares of error. 

Table 7 presents the results of the training and 

testing phases, highlighting the performance of the 

neural network model. The cross-entropy error, which 

represents the objective function minimized during 

training, was evaluated for both datasets. The sum of 

squared errors during the training phase was recorded at 

0.21, indicating the model's predictive accuracy. 

Notably, the entropy error for the test sample (0.11) was 

lower than that for the training dataset, suggesting that 

the model achieved a well-fitted state and maintained its 

generalization capability during testing. 

Table 8 provides an analysis of the relative 

importance of the independent variables in influencing 

temperature variations, as determined by the neural 

network model. The findings indicate differing levels of 

significance among the independent variables, 

demonstrating the model’s ability to capture complex 

relationships within the dataset. 

In the proposed model, the greatest relative impact on 

the increase in the water gap was attributed to water use 

for domestic purposes (100%), followed by water use 

for agricultural purposes (66.7%) and water use for 

industrial purposes (22.1%).

γ c =  tanh  c =
𝑒𝑐 − e−𝑐

e𝑐 + e−𝑐
+ 𝐵𝑖𝑎𝑠 

𝑦 𝑐 = 𝑐 + 𝐵𝑖𝑎𝑠 
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Figure 6. Architecture of the Multi-Layer Perceptron (MLP) Neural Network 

 

Table 7. Summary of the Neural Network Model Used. 

Model Summary 

Training 

Sum of Squares Error 0.218 

Relative Error 0.026 

Stopping Rule Used 
1 consecutive step(s) with no decrease in 

errora 

Training Time 0:00:00.00 

Testing 
Sum of Squares Error 0.110 

Relative Error 0.058 

Dependent Variable: Water_Gap 

a. Error computations are based on the testing sample. 

 

Table 8. Relative Importance of Independent Variables as Determined by the Neural Network Model. 

Independent Variable Importance 

 Importance Normalized Importance 

Fresh water for agricultural purposes 0.353 66.7% 

Fresh water for industrial purposes 0.117 22.1% 

Fresh water for domestic purposes 0.530 100.0% 

Determine the Ideal Percentage of Water Use for 

Domestic Purposes to Minimize the Water Gap 

Given the critical role of domestic water 

consumption in addressing water scarcity, the optimal 

percentage of water allocated for domestic use to 

mitigate the water gap was identified, as shown in 

Table 9. To determine this ideal ratio, the governing 

equation was derived and expressed as: 

 

Solving for x, the optimal ratio of domestic water 

consumption required to reduce the water deficit was 

calculated as 8.19%. This finding highlights the 

significance of strategic water allocation in narrowing 

the water gap and ensuring more sustainable resource 

management. 

Results of Forecasting the Water Gap in Syria 

During the Period (2023-2030) Using the Neural 

Network Model 

The projected discrepancy between per capita 

freshwater availability and the water poverty threshold 

in Syria for the period 2023–2030 was estimated using 

a neural network model, as detailed in Table 10. The 

forecast indicates a persistent upward trend in the water 

gap, with an estimated annual growth rate of 0.29%. By 

2030, the water gap is expected to reach its highest 

level, with a projected volume of approximately 666.77 

cubic meters. These findings highlight the increasing 

severity of water scarcity in Syria, underscoring the 

need for proactive water management strategies to 

mitigate the growing deficit. 

 

 

𝑦 = 605.96 𝑥 − 4966.49 
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Table 9. Relationship Between the Water Gap and Domestic Water Use. 

General Trend Equation R2 F 

Y = 20893.04 – 4966.49 x + 302.98 x2 

(0.00)**    (0.00)**  (0.00)** 

0.86 30.67** 

 

Table 10. Projected Water Gap in Syria for the Period 2023–2030 Based on Neural Network Modeling. 

Year Expected water gap (m3) Annual growth rate   %  

2023 651.45 

0.29 %  

2024 654.55 

2025 657.32 

2026 659.75 

2027 661.89 

2028 663.75 

2029 665.37 

2030 666.77 

Conclusions: 

The findings of the research indicate a general 

upward trajectory in the utilization of fresh water for 

agricultural and domestic purposes. Conversely, there 

has been a general decline in the utilization of water for 

industrial purposes over the specified period (2000-

2022). The utilization of water for domestic purposes 

exerted the greatest influence on the widening of the 

gap. The proposed neural network model indicates that 

the use of water for agricultural purposes is of greater 

consequence than the use of water for industrial 

purposes, with water itself occupying the next highest 

level of importance. 

In light of this, it is imperative that the necessary 

measures be taken to reduce the consumption of fresh 

water for domestic purposes. This can be achieved by 

rationalizing its use, for example through the 

introduction of modifications to the water networks 

used and the search for alternative sources, such as the 

harvesting of rainwater. Furthermore, it is essential to 

protect water bodies such as rivers and lakes from 

pollution in all forms. In the context of agricultural 

production, the implementation of appropriate irrigation 

techniques is essential. Modern irrigation techniques, 

such as drip irrigation, take into account the field 

capacity of each crop, employing artificial intelligence 

in the field of water management. 
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