A Review of Enhancing Performance and Sustainability of RC Shear Walls
Ghaida Edlebi
Dept. of Civil and Environmental Engineering, Beirut Arab University, Riad El Solh 11072809, Beirut, Lebanon
DOI: https://doi.org/10.61706/sccee120115
Keywords: Enhance, Reinforced concrete, Retrofit, Seismic, Shear walls
Abstract
Reinforced Concrete Shear walls are vertical components within a structure that are specifically engineered to counteract horizontal forces, such as those generated by wind or seismic activity. Their primary purpose is to enhance the stability and resilience of the building by redirecting these lateral forces to the foundation. This redirection effectively minimizes the building’s lateral movement during events like earthquakes or strong winds. Nowadays, building owners highly value the ability to ensure maintenance without incurring additional costs even in the face of major earthquakes. To achieve this, it’s crucial to reduce damage and maintain the reparability of structural elements. Multiple shear walls often bear heavy gravitational loads and remain susceptible to brittle breakdown due to shearing forces during lateral seismic loading. This susceptibility substantially increases the risk of a complete collapse of the entire shear wall system. The aim of this research paper is to comprehensively study and analyze various research endeavors concerning retrofitting methods employed to enhance the seismic resistance of new or pre-existing reinforced concrete (RC) shear. This analysis will include real-world case studies of examined structures. Moreover, this paper highlights the future potential and provides recommendations for effective retrofitting practices.
Downloads
References
Aaleti, S., & Sritharan, S. (2009). A simplified analysis method for characterizing unbonded post-tensioned precast wall systems. Engineering Structures, 31(12), 2966-2975. https://doi.org/10.1016/j.engstruct.2009.07.024 DOI: https://doi.org/10.1016/j.engstruct.2009.07.024
Balendra, T., Li, Z. J., Tan, K. H., & Koh, C. G. (2007). VULNERABILITY OF BUILDINGS TO LONG DISTANCE EARTHQUAKES FROM SUMATRA. Journal of Earthquake and Tsunami, 01(01), 71-85. https://doi.org/10.1142/S1793431107000055 DOI: https://doi.org/10.1142/S1793431107000055
Banias, G., Achillas, Ch., Vlachokostas, Ch., Moussiopoulos, N., & Papaioannou, I. (2011). A web-based Decision Support System for the optimal management of construction and demolition waste. Waste Management, 31(12), 2497-2502. https://doi.org/10.1016/j.wasman.2011.07.018 DOI: https://doi.org/10.1016/j.wasman.2011.07.018
Basereh, S., Okumus, P., & Aaleti, S. (2020). Seismic Retrofit of Reinforced Concrete Shear Walls to Ensure Reparability. Structures Congress 2020, 498-509. https://doi.org/10.1061/9780784482896.046 DOI: https://doi.org/10.1061/9780784482896.046
Bigalke, J. (2012). San Francisco: Sunday, Monday, Tuesday September 16-18, 2012. PSA Journal, 78(3), 20-26.
Calvi, G. M., Sullivan, T. J., & Welch, D. P. (2014). A Seismic Performance Classification Framework to Provide Increased Seismic Resilience. In A. Ansal (Ed.), Perspectives on European Earthquake Engineering and Seismology. Geotechnical, Geological and Earthquake Engineering (Vol. 34, pp. 361-400). Springer, Cham. https://doi.org/10.1007/978-3-319-07118-3_11 DOI: https://doi.org/10.1007/978-3-319-07118-3_11
Clark-Ginsberg, A., Easton-Calabria, L. C., Patel, S. S., Balagna, J., & Payne, L. A. (2021). When disaster management agencies create disaster risk: a case study of the US’s Federal Emergency Management Agency. Disaster Prevention and Management: An International Journal, 30(4/5), 447-461. https://doi.org/10.1108/DPM-03-2021-0067 DOI: https://doi.org/10.1108/DPM-03-2021-0067
Cortés-Puentes, L., Zaidi, M., Palermo, D., & Dragomirescu, E. (2018). Cyclic loading testing of repaired SMA and steel reinforced concrete shear walls. Engineering Structures, 168, 128-141. https://doi.org/10.1016/j.engstruct.2018.04.044 DOI: https://doi.org/10.1016/j.engstruct.2018.04.044
Dunand, F., Rodgers, J. E., Acosta, A. V, Salsman, M., Bard, P. Y., & Çelebi, M. (2004). Ambient Vibration and Earthquake Strong Motion-Data Sets for Selected USGS Extensively Instrumented Buildings. https://doi.org/10.3133/ofr20041375 DOI: https://doi.org/10.3133/ofr20041375
Elnashai, A. S., & Pinho, R. (1998). REPAIR AND RETROFITTING OF RC WALLS USING SELECTIVE TECHNIQUES. Journal of Earthquake Engineering, 2(4), 525-568. https://doi.org/10.1080/13632469809350334 DOI: https://doi.org/10.1080/13632469809350334
Finkbeiner, M., Inaba, A., Tan, R., Christiansen, K., & Klüppel, H.-J. (2006). The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. The International Journal of Life Cycle Assessment, 11(2), 80-85. https://doi.org/10.1065/lca2006.02.002 DOI: https://doi.org/10.1065/lca2006.02.002
Fiorato, A. E., Oesterle, R. G., & Corley, W. G. (1983). Behavior of Earthquake Resistant Structural Walls Before and After Repair. ACI Journal Proceedings, 80(5), 403-413. https://doi.org/10.14359/10864 DOI: https://doi.org/10.14359/10864
Henry, R. S. (2011). Self-centering Precast Concrete Walls for Buildings in Regions with Low to High Seismicity [PhD, The University of Auckland]. https://researchspace.auckland.ac.nz/handle/2292/6875
Holden, T., Restrepo, J., & Mander, J. B. (2003). Seismic Performance of Precast Reinforced and Prestressed Concrete Walls. Journal of Structural Engineering, 129(3), 286-296. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(286) DOI: https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(286)
Ireland, M. G., Pampanin, S., & Bull, D. (2007). Experimental Investigations of a Selective Weakening Approach for the Seismic Retrofit of R.C. Walls. University of Canterbury. Civil and Natural Resources Engineering. http://hdl.handle.net/10092/2811
Jeffrey, A., Callow, P. E., Kyle, E., Krall, P. E., Thomas, Z., & Scarangello, P. E. (2009, January). The New York Times Building exemplifies the idea of transparency in reporting by wearing part of its structural frame on the outside – Inside Out. MODERN STEEL CONSTRUCTION, 1-4.
Kam, W. Y., & Pampanin, S. (2008). Selective weakening techniques for retrofit of existing reinforced concrete structures. The 14 Th World Conference on Earthquake Engineering. http://hdl.handle.net/10092/1982
Kam, W. Y., Pampanin, S., & Elwood, K. (2011). Seismic performance of reinforced concrete buildings in the 22 February Christchurch (Lyttelton) earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 44(4), 239-278. https://doi.org/10.5459/bnzsee.44.4.239-278 DOI: https://doi.org/10.5459/bnzsee.44.4.239-278
Kam, W. Y., Pampanin, S., Palermo, A., & Carr, A. J. (2010). Self-centering structural systems with combination of hysteretic and viscous energy dissipations. Earthquake Engineering & Structural Dynamics, n/a-n/a. https://doi.org/10.1002/eqe.983 DOI: https://doi.org/10.1002/eqe.983
Kang, L., Qian, H., Guo, Y., Li, Z., Zhang, S., & Song, G. (2021). Seismic Performance of SMA/ECC Concrete Shear Wall with Self-Centering and Self-Repairing. Earth and Space 2021, 331-336. https://doi.org/10.1061/9780784483381.030 DOI: https://doi.org/10.1061/9780784483381.030
Kelly, J. M. (1998). Seismic isolation of civil buildings in the USA. Progress in Structural Engineering and Materials, 1(3), 279-285. https://doi.org/10.1002/pse.2260010309 DOI: https://doi.org/10.1002/pse.2260010309
Khairi, M., Jaapar, A., & Yahya, Z. (2017). The application, benefits and challenges of retrofitting the existing buildings. IOP Conference Series: Materials Science and Engineering, 271, 012030. https://doi.org/10.1088/1757-899X/271/1/012030 DOI: https://doi.org/10.1088/1757-899X/271/1/012030
Khalil, A., & Ghobarah, A. (2005). BEHAVIOUR OF REHABILITATED STRUCTURAL WALLS. Journal of Earthquake Engineering, 9(3), 371-391. https://doi.org/10.1080/13632460509350547 DOI: https://doi.org/10.1080/13632460509350547
Khasreen, M., Banfill, P. F., & Menzies, G. (2009). Life-Cycle Assessment and the Environmental Impact of Buildings: A Review. Sustainability, 1(3), 674-701. https://doi.org/10.3390/su1030674 DOI: https://doi.org/10.3390/su1030674
Kim, S.-Y., Cho, U., Chung, J.-H., Bae, B.-I., & Choi, C.-S. (2021). Seismic Performance of Existing RC Structural Walls Retrofitted in Flexure by Wall End Plate. Sustainability, 13(2), 509. https://doi.org/10.3390/su13020509 DOI: https://doi.org/10.3390/su13020509
Kpamma, E. Z., & Adjei-Kumi, T. (2011). Management of Waste in the Building Design Process: The Ghanaian Consultants’ Perspective. Architectural Engineering and Design Management, 7(2), 102-112. https://doi.org/10.1080/17452007.2011.582333 DOI: https://doi.org/10.1080/17452007.2011.582333
Kurama, Y., Sause, R., Pessiki, S., & Lu, L. W. (1999). Lateral Load Behavior and Seismic Design of Unbonded Post-Tensioned Precast Concrete Walls. ACI Structural Journal, 96(4), 622-632. https://doi.org/10.14359/700 DOI: https://doi.org/10.14359/700
Li, H., Chen, Z., Yong, L., & Kong, S. C. W. (2005). Application of integrated GPS and GIS technology for reducing construction waste and improving construction efficiency. Automation in Construction, 14(3), 323-331. https://doi.org/10.1016/j.autcon.2004.08.007 DOI: https://doi.org/10.1016/j.autcon.2004.08.007
Li, Y., & Zhang, X. (2013). Web-based construction waste estimation system for building construction projects. Automation in Construction, 35, 142-156. https://doi.org/10.1016/j.autcon.2013.05.002 DOI: https://doi.org/10.1016/j.autcon.2013.05.002
Lu, M., Poon, C.-S., & Wong, L.-C. (2006). Application Framework for Mapping and Simulation of Waste Handling Processes in Construction. Journal of Construction Engineering and Management, 132(11), 1212-1221. https://doi.org/10.1061/(ASCE)0733-9364(2006)132:11(1212) DOI: https://doi.org/10.1061/(ASCE)0733-9364(2006)132:11(1212)
Marini, A., & Meda, A. (2009). Retrofitting of R/C shear walls by means of high-performance jackets. Engineering Structures, 31(12), 3059-3064. https://doi.org/10.1016/j.engstruct.2009.08.005 DOI: https://doi.org/10.1016/j.engstruct.2009.08.005
Martinelli, P., & Filippou, F. C. (2009). Simulation of the shaking table test of a seven-story shear wall building. Earthquake Engineering & Structural Dynamics, 38(5), 587-607. https://doi.org/10.1002/eqe.897 DOI: https://doi.org/10.1002/eqe.897
Menna, C., Asprone, D., Jalayer, F., Prota, A., & Manfredi, G. (2013). Assessment of ecological sustainability of a building subjected to potential seismic events during its lifetime. The International Journal of Life Cycle Assessment, 18(2), 504-515. https://doi.org/10.1007/s11367-012-0477-9 DOI: https://doi.org/10.1007/s11367-012-0477-9
Mistri, A., Pa, R. D., & Sarkar, P. (2016). Condition assessment of fire affected reinforced concrete shear wall building – A case study. Advances in Concrete Construction, 4(2), 89-105. https://doi.org/10.12989/acc.2016.4.2.089 DOI: https://doi.org/10.12989/acc.2016.4.2.089
Moehle JP. (2000). State of Research on Seismic Retrofit of Concrete Building Structures in the US. In US-Japan Symposium and Workshop on Seismic Retrofit of Concrete Structures-State of Research and Practice.
Mosalam, K. M., Mahin, S. A., & Rojansky, M. (2003). Evaluation of Seismic Performance and Retrofit of Lightweight Reinforced Concrete Shearwalls. ACI Structural Journal, 100(6), 1-11. https://doi.org/10.14359/12835 DOI: https://doi.org/10.14359/12835
Pampanin, S., Amaris, a, Akguzel, U., & Palermo, A. (2006). Experimental Investigations on High-Performance Jointed Ductile Connections for Precast Frames. First European Conference on Earthquake Engineering and Seismology, September, 3-8.
Passoni, C., Guo, J., Christopoulos, C., Marini, A., & Riva, P. (2020). Design of dissipative and elastic high-strength exoskeleton solutions for sustainable seismic upgrades of existing RC buildings. Engineering Structures, 221, 111057. https://doi.org/10.1016/j.engstruct.2020.111057 DOI: https://doi.org/10.1016/j.engstruct.2020.111057
Paterson, J., & Mitchell, D. (2003). Seismic Retrofit of Shear Walls with Headed Bars and Carbon Fiber Wrap. Journal of Structural Engineering, 129(5), 606-614. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(606) DOI: https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(606)
Perez, F. J., Pessiki, S., & Sause, R. (2004). Seismic Design of Unbonded Post-Tensioned Precast Concrete Walls with Vertical Joint Connectors. PCI Journal, 49(1), 58-79. https://doi.org/10.15554/pcij.01012004.58.79 DOI: https://doi.org/10.15554/pcij.01012004.58.79
Poon, C. S., Yu, A. T. W., & Jaillon, L. (2004). Reducing building waste at construction sites in Hong Kong. Construction Management and Economics, 22(5), 461-470. https://doi.org/10.1080/0144619042000202816 DOI: https://doi.org/10.1080/0144619042000202816
Poon, C. S., Yu, A. T. W., Wong, S. W., & Cheung, E. (2004). Management of construction waste in public housing projects in Hong Kong. Construction Management and Economics, 22(7), 675-689. https://doi.org/10.1080/0144619042000213292 DOI: https://doi.org/10.1080/0144619042000213292
Poon, D. C. K., Shieh, S., Joseph, L. M., & Chang, C. (2004). Structural design of Taipei 101, the world’s tallest building. Proceedings of the CTBUH 2004 Seoul Conference, Seoul, Korea, 271-278.
Priestley, M. J. N., Evison, R. J., & Carr, A. J. (1978). Seismic response of structures free to rock on their foundations. Bulletin of the New Zealand Society for Earthquake Engineering, 11(3), 141-150. https://doi.org/10.5459/bnzsee.11.3.141-150 DOI: https://doi.org/10.5459/bnzsee.11.3.141-150
Pryshlakivsky, J., & Searcy, C. (2013). Fifteen years of ISO 14040: a review. Journal of Cleaner Production, 57, 115-123. https://doi.org/10.1016/j.jclepro.2013.05.038 DOI: https://doi.org/10.1016/j.jclepro.2013.05.038
Rahman, A. M., & Restrepo-Posada, J. I. (2000). Earthquake resistant precast concrete buildings : seismic performance of cantilever walls prestressed using unbonded tendons. University of Canterbury. Department of Civil Engineering. http://hdl.handle.net/10092/10702
Restrepo, J. I., & Rahman, A. (2007). Seismic Performance of Self-Centering Structural Walls Incorporating Energy Dissipators. Journal of Structural Engineering, 133(11), 1560-1570. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:11(1560) DOI: https://doi.org/10.1061/(ASCE)0733-9445(2007)133:11(1560)
Sacks, R., Radosavljevic, M., & Barak, R. (2010). Requirements for building information modeling based lean production management systems for construction. Automation in Construction, 19(5), 641-655. https://doi.org/10.1016/j.autcon.2010.02.010 DOI: https://doi.org/10.1016/j.autcon.2010.02.010
Saunders, J., & Wynn, P. (2004). Attitudes towards waste minimisation amongst labour only sub‐contractors. Structural Survey, 22(3), 148-155. https://doi.org/10.1108/02630800410549044 DOI: https://doi.org/10.1108/02630800410549044
Sharma, S., & Aaleti, S. (2019). A study on Residual Drift and Concrete Strains in Unbonded Post-Tensioned Precast Rocking Walls. 12th Canadian Conference on Earthquake Engineering, 1-8.
Shen, D., Yang, Q., Jiao, Y., Cui, Z., & Zhang, J. (2017). Experimental investigations on reinforced concrete shear walls strengthened with basalt fiber-reinforced polymers under cyclic load. Construction and Building Materials, 136, 217-229. https://doi.org/10.1016/j.conbuildmat.2016.12.102 DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.102
Shen, L. Y., Tam, V. W. Y., Tam, C. M., & Drew, D. (2004). Mapping Approach for Examining Waste Management on Construction Sites. Journal of Construction Engineering and Management, 130(4), 472-481. https://doi.org/10.1061/(ASCE)0733-9364(2004)130:4(472) DOI: https://doi.org/10.1061/(ASCE)0733-9364(2004)130:4(472)
Shreve, S. D. (2006). A HISTORY WORTH SAVING: THE PALACE OF FINE ARTS AND THE INTERPRETATION OF HISTORY ON A RECONSTRUCTED SITE [Dissertation or thesis, Cornell University Graduate School]. https://ecommons.cornell.edu/handle/1813/2836
Smith, B. J., & Kurama, Y. C. (2014). Seismic design guidelines for solid and perforated hybrid precast concrete shear walls. PCI Journal, 59(3), 43-59. https://doi.org/10.15554/pcij.06012014.43.59 DOI: https://doi.org/10.15554/pcij.06012014.43.59
Solís-Guzmán, J., Marrero, M., Montes-Delgado, M. V., & Ramírez-de-Arellano, A. (2009). A Spanish model for quantification and management of construction waste. Waste Management, 29(9), 2542-2548. https://doi.org/10.1016/j.wasman.2009.05.009 DOI: https://doi.org/10.1016/j.wasman.2009.05.009
Su, X., Andoh, A. rahman, Cai, H., Pan, J., Kandil, A., & Said, H. M. (2012). GIS-based dynamic construction site material layout evaluation for building renovation projects. Automation in Construction, 27, 40-49. https://doi.org/10.1016/j.autcon.2012.04.007 DOI: https://doi.org/10.1016/j.autcon.2012.04.007
Taghdi, M., Bruneau, M., & Saatcioglu, M. (2000a). Analysis and Design of Low-Rise Masonry and Concrete Walls Retrofitted Using Steel Strips. Journal of Structural Engineering, 126(9), 1026-1032. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1026) DOI: https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1026)
Taghdi, M., Bruneau, M., & Saatcioglu, M. (2000b). Seismic Retrofitting of Low-Rise Masonry and Concrete Walls Using Steel Strips. Journal of Structural Engineering, 126(9), 1017-1025. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1017) DOI: https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1017)
Twigden, K. M., & Henry, R. S. (2015). Experimental response and design of O-connectors for rocking wall systems. Structures, 3, 261-271. https://doi.org/10.1016/j.istruc.2015.06.002 DOI: https://doi.org/10.1016/j.istruc.2015.06.002
van de Lindt, J. W., Bahmani, P., Mochizuki, G., Pryor, S. E., Gershfeld, M., Tian, J., Symans, M. D., & Rammer, D. (2016). Experimental Seismic Behavior of a Full-Scale Four-Story Soft-Story Wood-Frame Building with Retrofits. II: Shake Table Test Results. Journal of Structural Engineering, 142(4). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001206 DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001206
Vecchio, F. J., Haro de la Peña, O. A., Bucci, F., & Palermo, D. (2002). Behavior of Repaired Cyclically Loaded Shearwalls. ACI Structural Journal, 99(3), 327-334. https://doi.org/10.14359/11916 DOI: https://doi.org/10.14359/11916
Vézina, S., & Pall, R. (2004). Seismic retrofit of MUCTC building using friction dampers, Palais Des Congres, Montreal. 13th World Conference on Earthquake Engineering, 1-11.
Vrijhoef, R., & Koskela, L. (2000). The four roles of supply chain management in construction. European Journal of Purchasing & Supply Management, 6(3-4), 169-178. https://doi.org/10.1016/S0969-7012(00)00013-7 DOI: https://doi.org/10.1016/S0969-7012(00)00013-7
Wang, C.-Y., & Ho, S. (2007). Pushover Analysis for Structure Containing RC Walls. 2nd International Conference on Urban Disaster Reduction, 40(1996), 27-29.
Wight, G. D., Kowalsky, M. J., & Ingham, J. M. (2007). Shake Table Testing of Posttensioned Concrete Masonry Walls with Openings. Journal of Structural Engineering, 133(11), 1551-1559. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:11(1551) DOI: https://doi.org/10.1061/(ASCE)0733-9445(2007)133:11(1551)
Yang, C., & Okumus, P. (2017). Mechanical Behavior and Prestress Loss of Unbonded Posttension Strands in Self-Centering Structures. Journal of Materials in Civil Engineering, 29(12). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002097 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002097
Youssef, N., Nuttall, B., Hata, O., Tahtakran, O., & Hart, G. C. (2000). Los Angeles City Hall. The Structural Design of Tall Buildings, 9(1), 3-24. https://doi.org/10.1002/(SICI)1099-1794(200003)9:1<3::AID-TAL141>3.0.CO;2-R DOI: https://doi.org/10.1002/(SICI)1099-1794(200003)9:1<3::AID-TAL141>3.0.CO;2-R
Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133-1140. https://doi.org/10.1016/j.buildenv.2010.12.002 DOI: https://doi.org/10.1016/j.buildenv.2010.12.002
Zhang, L. V., Nehdi, M. L., Suleiman, A. R., Allaf, M. M., Gan, M., Marani, A., & Tuyan, M. (2021). Crack self-healing in bio-green concrete. Composites Part B: Engineering, 227, 109397. https://doi.org/10.1016/j.compositesb.2021.109397 DOI: https://doi.org/10.1016/j.compositesb.2021.109397
Zhang, X., Wu, Y., & Shen, L. (2012). Application of low waste technologies for design and construction: A case study in Hong Kong. Renewable and Sustainable Energy Reviews, 16(5), 2973-2979. https://doi.org/10.1016/j.rser.2012.02.020 DOI: https://doi.org/10.1016/j.rser.2012.02.020
Zhang, Y.-M., Yu, J.-T., Lu, Z.-D., & Zhang, R. (2015). Experimental test on aseismic behavior of damaged reinforced concrete shear wall repaired with ECC. Gongcheng Lixue/Engineering Mechanics, 32(1), 72-80.
Zhao, J., & Sritharan, S. (2007). Modeling of Strain Penetration Effects in Fiber-Based Analysis of Reinforced Concrete StructuresConcrete Structures. Structural Journal, 104(2), 133-141. https://doi.org/10.14359/18525 DOI: https://doi.org/10.14359/18525