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Abstract

Concrete is widely recognized as one of the most durable construction materials, however, it is often
exposed to harsh environmental conditions that can compromise its mechanical performance. This
experimental study evaluated and compared the mechanical properties of fiber-reinforced concrete
incorporating cornhusk fiber (CHF) and glass fiber (GF) under varying loads and environmental
exposures. Three levels of CHF (0.5%, 1.0%, and 1.5% by mass of cementitious material) and an
optimized GF dosage (0.1% by volume of concrete) were examined. Concrete cylinder specimens were
cast and monitored for structural performance over 75 and 150 days under two exposure conditions:
laboratory-controlled (in-lab) and natural outdoor environments. The mechanical properties assessed
included compressive strength and splitting tensile strength. The findings indicated that concrete
reinforced with 0.1% GF (GFRC) exhibited the highest 28-day compressive strength among all
samples. Among CHF-reinforced concrete (CHFRC) mixtures, the 0.5% CHF dosage demonstrated
superior 28-day compressive strength compared to other CHFRC mixtures. Over time, the 0.5%
CHFRC mixture consistently exhibited the highest strength gains under both in-lab and outdoor
conditions. In the context of tensile strength testing, GFRC (0.1%) exhibited optimal performance at
the 28-day mark. However, among the CHFRC samples, the 1.5% CHFRC mixture demonstrated the
highest splitting tensile strength at the 28-day interval. At the 150-day mark of outdoor exposure, the
0.5% CHFRC mixture surpassed all other specimens, including GFRC, thereby underscoring its
remarkable long-term performance under natural environmental conditions. These findings underscore
the potential of 0.5% CHFRC for practical applications, offering an optimal balance of durability and
mechanical strength, particularly under prolonged exposure to environmental stresses.
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Introduction

Concrete is one of the most widely used
construction materials on a global scale. As the
demands for development and infrastructure continue to
increase, there is a growing need to enhance the intrinsic
properties of concrete to promote sustainability and
improve its structural performance. Concrete is
inherently a brittle material; when subjected to
excessive stress, it absorbs the impact by forming cracks
(Sahmaran & Li, 2010). The incorporation of short,
randomly distributed fibers into the concrete mix is an
effective approach to mitigate concerns about its
brittleness. The type of fiber, its geometry, quantity,
distribution, orientation, and the characteristics of the
surrounding matrix are critical factors that influence the
properties of fiber-reinforced concrete (FRC)
(Sadrinejad et al., 2018). A substantial body of research
has demonstrated that, in addition to addressing
concerns about brittleness, the incorporation of fibers in
concrete has a positive impact on its strength
characteristics (J. Ahmad, Gonzalez-Lezcano, et al.,
2022; Babalola et al., 2021; Hassanpour et al., 2012;
Jamshaid et al., 2022; Khan et al., 2022; Manikandan et
al., 2012; Odia, 2023; Saqib & Saleem, 2021). The
American Society for Testing and Materials (ASTM)
has established a classification system for fiber-
reinforced concrete, which is comprised of four
categories: Type I - Steel Fiber-Reinforced Concrete
(SFRC), Type II - Glass Fiber-Reinforced Concrete
(GFRC), Type II - Synthetic Fiber-Reinforced
Concrete (SFRC), and Type IV - Natural Fiber-
Reinforced Concrete. The categorization system is
outlined in the ASTM International document, ASTM
International, ASTM C1116/C1116M-10a(2015) -
Standard Specification for Fiber-Reinforced Concrete,
which was published in 2015 and is currently in effect.
The utilization of natural fibers in concrete is not an
arbitrary decision; it is supported by the chemical
composition of these fibers, which includes cellulose,
lignin, hemicellulose, pectin, wax, and other
components. Cellulose, a primary component in this
regard, functions as the principal reinforcement element
(Chokshi et al., 2022; Torgal & Jalali, 2011). The
investigation by Mark and Vincent Oettel focused on
the performance of bamboo as a plant fiber in ultra-
high-performance concrete (UHPC).The rationale
behind this choice was to enhance bonding, reduce
alkalinity, and consequently improve durability. To this
end, they conducted a series of flexural tests to assess
the load-bearing capacity of UHPC reinforced with
bamboo fibers. The results of these tests demonstrated
significant improvements in performance, with a 37.1%
increase for the 1.25% bamboo fiber addition and a
30.9% increase for the 2.5% bamboo fiber addition
(Bittner & Oettel, 2022).
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Natural fibers (NFs) are generally hydrophilic,
meaning they absorb water. This can weaken the bond
between the fibers and the cement matrix in composites
(Chandrasekar et al., 2017). To address this issue,
researchers have explored various methods to enhance
the properties of NFs for use in cementitious materials.
A review by Chandrasekar et al. (2017) outlined four
chemical techniques for NF treatment: acetylation,
alkalization, benzoylation, and silane treatment. Among
these, alkalization was identified as the most cost-
effective and efficient method. Similarly, Ismail et al.
reviewed the effects of sodium hydroxide (NaOH)
treatment on cellulose-based fibers, including sisal,
hemp, and coir. They found that NaOH treatment
reduces  impurities, particularly = non-cellulose
components, and improves the fiber's surface structure.
These enhancements have been shown to strengthen the
bond between fibers and the cement matrix, resulting in
enhanced mechanical performance and increased
durability of cementitious composites (Herlina Sari et
al., 2018; Mir Md et al., 2021; Shah, Jing, et al., 2022;
Wubneh et al., 2022; Yilmaz et al., 2016; Yilmaz,
2013).

In a subsequent study, Ismail et al. investigated the
use of coir, sisal, and hybrid (coir and sisal) natural
fiber-reinforced concrete (NFRC). The researchers
explored the utilization of varying fiber lengths,
specifically 10mm, 20mm, and 30mm, at different mass
percentages relative to the cement content, ranging from
0.5% to 1.5%. The study's findings revealed that, while
a 0.5% concentration of 20mm HFRC exhibited the
most notable improvement in compressive strength,
registering a substantial increase of 35.98%, this
concentration resulted in a marginal reduction in tensile
strength, decreasing by 2.28%. The split tensile strength
test demonstrated that the 1.0% inclusion of 20mm
HFRC yielded the most significant enhancement, with
an observed increase of 25.48%.In summary, the study's
primary conclusion indicated that the 1.0%
incorporation of 20mm HFRC represented the optimal
choice for enhancing both compressive and tensile
strength (Shah, Li, et al., 2022).

Hardjasaputra et al. (2017) conducted an
experimental investigation aimed at probing the tensile
reinforcement potential of coconut fibers in ultra-
lightweight concrete. In their study, they explored
different weight percentages of coconut fibers relative
to the cement content, specifically 0%, 0.1%, 0.175%,
and 0.25%. Utilizing flexural strength tests on 60mm x
60mm x 300mm beam specimens, the findings
indicated that the incorporation of 0.175% coconut
fibers demonstrated optimal performance in terms of
tensile strength and structural rigidity (Hardjasaputra et
al., 2017).

While the percentage application of fibers in
concrete continues to be explored, some efforts have
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been made toward exploring the effect of several fiber
lengths in concrete. This is primarily due to the fact that
the process of incorporating natural fibers in concrete
frequently results in agglomeration (Faruk et al., 2014).
Consequently, the amount of fiber that can be
incorporated is constrained by a phenomenon referred
to as "balling," which is the propensity of fibers to
intertwine and form balls during the mixing process
(Aziz et al., 1987; Zakaria et al., 2017). In a study by
Zakaria et al. (2015) the incorporation of jute yarn cuts
(10 mm and 15 mm) at a 0.1% dosage by volume as
reinforcing fibers in concrete was found to be an
effective method of minimizing inadequate distribution
and irregular arrangement of natural fibers in the
mixture. This approach yielded notable tensile,
compressive, and flexural strength outcomes for the
concrete (Zakaria et al., 2015).

In a separate scholarly inquiry aimed at evaluating
the compressive strength and chloride permeability
performance of concrete, various proportions of glass
fibers (0.03%, 0.06%, and 0.1% by concrete volume)
were incorporated into two different cement grades,
specifically M20 and M30, over a monitoring period
spanning 180 days. This study observed a reduction in
bleeding when glass fibers were introduced,
consequently contributing to the mitigation of crack
formation. The most noteworthy findings from this
investigation revealed that the 0.1% glass fiber
admixture exhibited the highest tensile and compressive
strengths.  Concurrently, in terms of cement
permeability, the sample containing 0.03% glass fiber
demonstrated the most favorable  outcome
(Chandramouli et al., 2010).

It is a well-established fact that, under typical
conditions, the compressive strength of concrete
continues to increase with age after the 28" day of
curing, albeit at a reduced rate. This phenomenon can
be attributed to the progressive hydration of cement and
the concurrent development of a more compact
microstructural composition (Seyam & Nemes, 2023).
In an exploratory study, the impact of concrete age and
coarse aggregate type on compressive strength
following exposure to elevated temperatures was
investigated. The study utilized crushed clay bricks,
expanded glass, and normal quartz aggregates for
28,120 and 240 days. The results for unheated
specimens indicated that compressive strength
increased with age, attributed to cement hydration and
denser microstructure formation. Conversely, concrete
comprising quartz aggregates and expanded glass
aggregates exhibited a decline in strength that was
found to be temperature- and age-dependent. Concrete
containing crushed clay bricks, on the other hand,
demonstrated enhanced resistance to elevated
temperatures, with the observed variations in strength
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attributed to disparities in aggregate thermal expansion
and moisture loss (Seyam & Nemes, 2023).

A review of the extant literature reveals a clear
emphasis on the potential for integrating natural fibers
into structural concrete, underscoring the necessity for
further exploration of cellulose-based fibers. However,
a notable lacuna exists in the research concerning
cornhusk fiber, a cellulose-based fiber, within the
context of structural concrete. While numerous studies
have examined the mechanical properties of Fiber-
Reinforced Concretes (FRCs), the collective impact of
exposure conditions and aging on the temporal
evolution of these concretes' strength characteristics has
received comparatively less attention. In addressing this
research gap, this study aims to assess the impact of
cornhusk fiber on the compressive and tensile strength
of concrete. Furthermore, it investigates how age and
exposure conditions jointly influence the rate of change
in these strength properties in cornhusk fiber-reinforced
concrete, comparing these outcomes with those of glass
fiber-reinforced concrete (GFRC).

This paper aims to examine the strength behavior
of concrete containing agricultural residue. To this end,
an experimental study was conducted, centered around
the use of three different percentages (0.5%, 1.0%, and
1.5% of cementitious material) of natural fiber
(cornhusk fiber) and an optimized percentage (0.1% of
concrete volume) of synthetic fiber (glass fiber) in
structural concrete. All cylinder concrete samples were
subjected to a 5-month structural monitoring period
under two exposure conditions (in-lab and
outside/real).The mechanical assessment of the
concrete was conducted by determining the
compressive strength and splitting tensile strength.

Methodology

The research was carried out following the work
plan highlighted below:

Samples Preparation

In this study, cornhusk fiber (CHF) and glass fiber
(GF) were the primary materials utilized, in conjunction
with the essential components of concrete: cement,
coarse aggregates, and fine aggregates. The cornhusk
waste was obtained from harvested cornfields at
Louisiana State University's Alexandria campus.

According to the extant literature, alkaline
treatment was identified as the optimal method for
extracting CHF (Herlina Sari et al., 2018). This method
resulted in the production of fibers at a rate of 26%—
28% of the cornhusk's weight, as depicted in Figure 1.
The extraction process entailed the following steps:

e The cornhusks were meticulously cleaned to remove
corncobs and pedicles, leaving only the husk.

SCCEE., Volume 3, Issue 1, (January — March 2025), pp: 1-16


https://scientificstepsgroup-ssg.com/steps-journal-of-civil-constructions-environmental-engineering/

e The husk was then boiled in a 4% sodium hydroxide
(NaOH) solution for 60-90 minutes to break down
hemicellulose and lignin, leaving cellulose fiber
strands.
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e The fibers were washed with cool water, spread to
minimize entanglement, and left to dry (Figure 2).

e A schematic of the process is illustrated in Figure 3.

Figure 1. Collected Cornhusk Residue from Corn Field

Sourcing/

Collection

Figure 2. Extracted Fiber from Cornhusk

+Cornhusk residue were
retrieved from the corn
fields of Alexandria, LA

Sorting and *Cobs and pedicles
Cleaning were removed from
the husk

*Samples boiled in a
molar solution of NaOH
for 60 - 90minutes

Alkaline
Treatment

+Extracted
Cooling & samples
Drying allowed to cool
and dry

Figure 3. Schematic Illustration of the Alkaline Treatment Process of Cornhusk

To facilitate a comparative analysis with natural
fibers, an industry-standard synthetic fiber—Alkali-
Resistant High Dispersion (AR) glass fiber—was
utilized. This fiber, manufactured by Nycon Industries,
complies with (ASTM International, ASTM
C1116/C1116M-10a(2015) - Standard Specification for
Fiber-Reinforced Concrete, n.d.) at a dosage of 1 1b/cy.
The properties of the glass fiber are outlined in Table 1.

Concrete Mix Design

The concrete mix employed in this study was
derived from a benchmark (Rupakheti, 2021), which
was a standard 1:1:2 mix by volume for M25 high-
strength concrete, with a target strength of 25MPa. The
concrete samples were prepared using Portland cement

type I/Il, which complied with the ASTM C-150
specifications. The coarse aggregate used in the mixture
was 9.5 mm crushed limestone, as determined by sieve
analysis using Gilson Testing Screen equipment. The
fine aggregate was fine river sand. The water-cement
ratio adopted was 0.47. Table 2 shows the mix
proportions by weight for 0.06m? of concrete, which is
the equivalent of nine 1220mm by 2440mm cylinder
samples.

Fiber Proportioning

A comprehensive review of the literature on the
use of natural fibers to reinforce concrete was
conducted, and it was determined that three percentages
of CHF reinforcement would be utilized in the study:
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0.5%, 1.0%, and 1.5% of the cementitious material (J.
Ahmad, Arbili, et al., 2022). Regarding fiberglass, the
mix proportion adopted was based on the ACI reference
guides, which generally range from 0.01% to 0.25% by
volume (ACI Commite 544.3R-08, 2008). Table 3
presents the weight percentage of the various fiber
contents utilized for 0.06m? of concrete, which is
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equivalent to nine-cylinder samples measuring
1220mm by 2440mm. To mitigate the occurrence of
balling and ensure the uniform distribution of the CHF
in the concrete, the fibers were incorporated into a post-
concrete mixture comprising cement, coarse aggregate,
and fine aggregate (ACI Commite 544.3R-08, 2008).

Table 1. Physical and Mechanical Properties of the AR-HD Glass Fiber

Item Value
Filament Diameter 0.0005” (0.01mm)
Fiber Length 0.5” (13mm)
Specific Gravity 2.7
Tensile Strength 1551 MPa
Flexural Strength 68,948 MPa
Melting Point 2075F
Color white
Water Absorption <1%
Zirconium 16%
Alkali Resistance High
Corrosion Resistance High

Table 2. Concrete Mix Proportion by Weight (1:1:2)

Material Weight (kg)
Portland Cement 9.45
Fine Aggregate 8.33
Coarse Aggregate 15.98
Water 4.40

Table 3. Amount by Weight of the CHF and Glass Fiber in 0.06m* Concrete

Fiber Content Weight (g)
0.5% CHF 42.6
1.0% CHF 86.2
1.5% CHF 127.0
0.1% FG 38.1

Concrete Samples

The concrete specimens utilized in this study were
cylindrical in shape, as specified in the study's scope.
Due to the nature of the study, a substantial number of
specimens were produced to accommodate tests
involving various percentages of fibers, environmental
conditions, and sample ages. To ensure the reliability of

the results, each test category included three specimens.
Table 4 presents the specimen characterization, and the
number of specimens allocated for each test. The
samples were prepared using a 0.1m*. 0.5HP direct
drive concrete mixer, in small batches of 0.06m?
sufficient to produce an equivalent of nine (9) cylinder
samples. This approach was adopted to ensure even
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distribution of the CHF in the concrete. All samples
were then subjected to 28-day wet curing, in accordance
with the prevailing standards set forth by ASTM
(ASTM International, 2000), within a large curing tank
equipped with a temperature control system that
maintained a constant temperature of 23+/-3°C, as
illustrated in Figure 4.

Specimen Curing, Monitoring and Testing

As demonstrated in Figures 5 and 6, the
experimental design of this study entailed subjecting the
concrete specimens to both external environmental
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conditions and internal laboratory conditions.
Subsequent to this, a series of tests and investigations
were conducted to ascertain the performance and
behavior of the specimens at various ages. For the
varying levels of exposure, compressive strength and
tensile strength tests were performed on the specimens.
The scheduled test times were as follows:

o After wet curing for 28 days (zero-day)
e The 75" day after curing
e The 150" day after curing

Table 4. Total Number of Concrete Cylinder Samples for Experimentation

Compressive Strength Test

Splitting Tensile Strength Test

Fiber

Content 2gth Lab Outside 2gth Lab Outside

day 75t q50th gqy 75t 150t day 75t 150t gay 75t day 150 day
0.5% 3 3 3 3 3 3 3 3 3 3
1.0% 3 3 3 3 3 3 3 3 3 3
1.5% 3 3 3 3 3 3 3 3 3 3
0.1%GF 3 3 3 3 3 3 3 3 3 3
Total 120

Figure 4. Saples subjected to 28 Days of Curing in a
Curing Tank

The following tests were performed on the
prepared specimens with the primary objective of
investigating the influence of reinforcement on the
structural properties of concrete. These examinations
included two critical assessments: compressive strength
testing and splitting tensile testing, as outlined below in
detail.

Figure 5. Array of Concrete Samples Placed in Lab-controlled
Conditions.

Compressive Strength Test of the Concrete
Cylinders

The compressive strength test is a pivotal
evaluation of concrete's mechanical properties,
particularly its compressive strength. According to
ASTM C39 (ASTM International, 2018), the
compressive strength of CHFRC and GFRC samples
containing diverse fibers was assessed using a Universal
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Testing Machine (UTM). Figure 7 illustrates this test. curing for a duration of 28 days, were demolded and
The samples were cured for 28 days in water, after positioned horizontally along the base plate of the
which they were tested on the respective scheduled UTM, as illustrated in Figure 8. Two flat strips of wood
days, 75" and 150™ days after the curing period, for both were positioned along the center of the sample to align
samples that were tested in the laboratory and those that symmetrically at the bottom and top contact points of
were tested outside. The compressive strength was the bottom and top bearing plates of the UTM,
calculated. respectively, in such a way that an equilibrium position
4Py is established. Subsequently, the machine was activated,

fem = aDZ (1) and an applied load rate of 0.3 to 0.6 MPa/Sec was

applied at the point of failure (maximum shear load).
The resulting readings were meticulously recorded, and
the splitting tensile strength was calculated as outlined

where fcm = compressive strength, (MPa), Pmax =
maximum load, (N), D = average diameter, (mm).

Splitting Tensile Strength Test on the Concrete in the ASTM International (2004) standard.
Cylinders 2p 2
The splitting tensile test was conducted in - md
accordance with the ASTM C496 standard to ascertain where T = tensile strength (MPa), P = load at
the tensile strength of the CHFRC and GFRC samples. failure (N), I = length (mm) and d = diameter (mm)

The concrete cylinder samples, having undergone wet
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Figure 6. Array of Concrete Cylinders in Outside Exposure Figure 7. Crushed Sample from Compressive Strength Test
Condition

Figure 8. Split Sample from the Splitting Tensile Strength Test

]
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Discussions

Effect of Cornhusk Fiber on 28™ Day Compressive
Strength

Subsequent to the completion of the 28-day curing
period, Figure 9 presents the computed compressive
strengths of the cylinder samples fabricated from
cornhusk fiber-reinforced concrete (CHFRC) and glass
fiber-reinforced concrete (GFRC).It is evident that there
exists a discernible negative correlation between the
CHFRC samples' average compressive strength and the
proportion of integrated fiber. This decline can be
attributed to a weakened cement-aggregate bond as the
amount of CHF increases (Erdem et al., 2011; Tang et
al., 2023). Additionally, due to the varying lengths of
the CHF, entanglement and agglomeration occur
amongst longer fibers, weakening the cement aggregate
bond and, consequently, compressive strength (W.
Ahmad et al., 2020; Wang et al., 2019). Among the
CHFRC variants, the 0.5% CHFRC demonstrated the
strongest compressive strength, exhibiting a notable
12% enhancement over the baseline M25 concrete
strength. However, it was observed that the 0.1% Glass
Fiber Reinforced Concrete (GFRC) variant exhibited
superior compressive strength compared to the target
for plain M25 concrete, surpassing it by 36%.
Furthermore, the 0.1% GFRC variant outperformed the
0.5% CHFRC by a margin of 21%. Conversely, the
1.0% CHF and 1.5% CHF samples demonstrated
diminished compressive strength, exhibiting reductions
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of 10.9% and 14.6%, respectively, compared with plain
concrete.

Effect of Age on Compressive Strength (CS) on
CHFRC

To further analyze the strength behavior,
compressive strength tests were conducted on the
CHFRC and GFRC samples placed inside the
laboratory and outside for 75 days and 150 days, as
shown in Table 5. This was done to observe the CS
progression with time in actual conditions. As expected,
there was a general increase in strength for both the
samples placed in the laboratory and those exposed to
the environment as the age of the samples increased
(Pourbaba et al., 2018; Seyam & Nemes, 2023). As
illustrated in Figure 10, for the laboratory samples, the
0.1% GFRC exhibited the most significant increase in
strength on both the 75th and the 150th day. This
increase was 22% and 72%, respectively, compared to
the strength on the 28th day. The 0.5% sample exhibited
an increase of 15% on the 75th day and 95% on the
150th day, while the 1.5% CHFRC sample
demonstrated the least increasing trend, with 9% and
37% increases on the 75th and 150th days, respectively.

Consequently, for the samples exposed to the
ambient environment, Table 5 presents the mean
compressive strength test results conducted for samples
at 75 days and 150 days after the 28™ day of the wet
curing period.

28th Day Compressive Strength (mpa)

40
35
30
2
2

-/

=

[=

Compressive Strength (MPa)

=

0.1% GFRC

H Sample 1

B Sample 2

15
1

0.5% CHFRC

1.0% CHFRC 1.5% CHFRC

Sample Type

B Sample 3

Figure 9. 28" Day Compressive Strength for the CHFRC and GFRC Cylinder Samples (MPa)
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Compressive Strength for Lab Conditioned FRC Cylinders (MPA)

70

60

Compressive Strength (MPA)

20 =X
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0 20 40 60

58.20

23.30

21.90

80 100 120 140 160

Age of Concrete (Days)

—@— (0.5% CHF

1.0% CHF

1.5 CHF —0— (. 1% GF

Figure 10. Average Compressive Strength vs. Age for Lab Conditioned CHFRC and GFRC Cylinder Samples

Table 5. Average Compressive Strength for Lab Conditioned CHFRC and GFRC Cylinder Samples

Lab Average Compressive Strength (MPa)

Sample Day Zero (28th) 75" Day 150" Day
0.5% CHF 27.93 28.82 48.86
1% CHF 22.26 21.87 41.34
1.5% CHF 21.35 23.29 29.32
0.1% GF 33.92 41.35 58.20

As illustrated in Figure 11, the 0.1% GFRC
samples exhibited an enhancement in compressive
strength of 27% and 80% on the 75™ and 150" days,
respectively, compared to the strength at the 28" day.
Among the CHFRCs, the 0.5% CHFRC exhibited the
most substantial increase in compressive strength,
reaching 45% on the 75" day and 140% on the 150™
day. In contrast, the 1.0% CHFRC demonstrated the
least significant change in compressive strength, with
an increase of 16% and 67%, respectively, on the 75"
and 150" days.

As illustrated in Figures 12 and 13, with
increasing age, the 0.5% CHFRC exhibited the most
significant increase in compressive strength compared
to the 0.1% GFRC sample. This phenomenon can be
attributed to the hydrophilic property of the CHF, which
facilitates the retention of moisture over time, thereby
promoting the internal hydration of concrete (Mishra,
2015). This, in turn, accelerates strength development
in the concrete (Soroushian & Ravanbakhsh, 1999).

Effect of Exposure Condition on Compressive
Strength of CHFRC

A preliminary examination of the CS results for
both the GFRC and the top-performing 0.5% CHFRC-
aged concrete reveals that the samples exposed to
external conditions exhibited higher values compared to
the laboratory samples. This enhanced strength
behavior can be attributed to the thermal cycling effect
(Hakeem et al., 2023) that the samples experienced
during the winter, spring, and summer seasons during
the monitoring and exposure periods. Furthermore, the
sustained curing and hydration processes triggered by
exposure to moisture from rain and subsequent drying
from heat have been linked to the enhancement of
compressive strength properties (El-Zohairy et al.,
2020). This is attributed to the intensified cement-water
reaction, which leads to an increase in concrete
hardness. As demonstrated in Table 5 , the samples
subjected to external conditions typically exhibit higher
compressive strength values compared to those exposed
to laboratory conditions.
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Figure 11. Average Compressive Strength vs. Age for Outside Conditioned CHFRC and GFRC Cylinder Samples.

Figure 12. Percentage Change in Compressive Strength with Age for Lab Conditioned 0.5% CHFRC and 0.1% GFRC samples.
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Figure 13. Percentage Change in Compressive Strength with Age for Outside Conditioned 0.5% CHFRC and 0.1% GFRC

samples.
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Effect of Age and Exposure on Tensile Strength of
CHFRC

As shown in Table 6, an increase in age was
observed to correspond with a consistent increase in the
lab-conditioned 0.1% GFRC, reaching 12% on the 75th
day and less than 2% on the 150th day. Conversely, the
samples exposed to external conditions exhibited a
marginally more substantial enhancement in the
splitting tensile strength of the 0.1% GFRC, with the
75th day reading measuring 3.51MPa and the 150th day
reading reaching 3.74MPa. Figures 14 and 15
demonstrate a similar trend for the 1.5% and 0.5%

11

CHFRC samples placed in both laboratory and outdoor
conditions.

As illustrated in Figure 14, the splitting tensile
strengths exhibited a gradual increase up to the 75" day
and subsequently underwent a decline of 22.2% and
15.5%, respectively, on the 150" day for the 1.5% and
0.5% CHFRC laboratory samples. In Figure 15, the
tensile strengths of the samples collected on the 150™
day exhibited a decline of 12.4% and 14.2% for the
1.5% and 0.5% CHFRC, respectively. Notwithstanding
this decline, on the 150" day, the 0.5% CHFRC
demonstrated superior performance in comparison to all
the other samples, including the GFRC.

Table 6. Average Splitting Tensile Strength for Lab Conditioned FRC Cylinder Samples

LAB Average Splitting Tensile Strength (MP)

Sample Dav Zero (0) 75" Day 150" Day
0.5% CHFRC 2.61 3.60 2.99
1% CHFRC 2.63 2.99 3.80
1.5% CHFRC 2.81 3.98 3.10
0.1% GFRC 3.30 3.68 3.70

Split Tensile Strength for Lab Conditioned FRC Cylinders (mpa)
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Figure 14. Average Splitting Tensile Strength vs. Age for Lab Conditioned FRC Cylinder Samples
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Figure 15. Average Splitting Tensile Strength vs. Age for Outside Conditioned FRC Cylinder Samples
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Effect of Cornhusk Fiber on the 28" Day Tensile
Strength of Concrete

Tables 6 and 7 present the performance of the
concrete composites under tension. The 0.1% GFRC
samples exhibited the highest tensile strength, followed
closely by the 1.5% CHFRC sample with a strength of
2.8MPa and the 0.5% sample demonstrating the poorest
performance of 2.6MPa after the 28" day of the curing
period. Despite the recorded low tensile strength values,
this outcome indicates a positive correlation between

Figure 16. Failure Profile of the GFRC after the Splitting

Tensile Strength Test
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the increase in fiber quantity and the tensile strength of
the CHFRC samples (Syed et al.,, 2020). Upon
conducting a post-failure pattern analysis, it was
observed that the Glass Fiber-Reinforced Concrete
(GFRC) sample displayed a split-through cut,
signifying a limited ability to control post-crack
behavior, as depicted in Figure 16. In contrast, the
CHFRC sample exhibited a more favorable failure
pattern, characterized by a well-contained and tightly
held composite structure, as illustrated in Figure 17.

Figure 1. Failure Profile of the CHFRC after the Splitting

Tensile Strength Test

Table 7. Average Compressive Strength Test for Outside-conditioned CHFRC and GFRC Samples

Outside Average Compressive Strength (MPa)

Sample Day Zero (28™) 75" Day 150% Day

0.5% CHF 27.93 36.31 60.34

1% CHF 22.26 25.90 37.22

1.5% CHF 21.35 26.00 38.00

0.1% GF 33.92 43.00 60.98
Conclusion Compressive Strength

In summary, the present study demonstrates that
the incorporation of cornhusk fiber (CHF) into concrete
can enhance specific mechanical properties.

Fiber Extraction

Among the various extraction methods evaluated,
alkaline treatment emerged as the most efficient
approach for extracting CHF, surpassing the
effectiveness of water retting and boiling.

e Among the concrete specimens tested, 0.1% glass
fiber-reinforced concrete (GFRC) exhibited the highest
overall strength.

e CHFRC demonstrated the most significant strength
increase over time, with 0.5% CHFRC showing the
greatest enhancement on the 28™ day.

e The 0.5% CHFRC also exhibited faster strength gain
than the 0.1% GFRC as the concrete aged, potentially
attributable to CHF's capacity to retain water and
enhance hydration.
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Tensile Strength

e At 28days, 0.1% GFRC exhibited the highest tensile
strength, with 1.5% CHFRC ranking second among the
CHF samples.

o However, by 150 days, the tensile strength of all
CHFRC samples decreased, with a 19% decline
observed in laboratory conditions and a 13% decline in
outdoor conditions.

o At this stage, the 0.5% CHFRC sample exhibited the
highest tensile strength, surpassing all other samples,
including the GFRC sample.

Optimal CHFRC Mix

e The 0.5% CHFRC mix was identified as the most
promising for compressive strength and long-term
performance.

e While 1.5% CHFRC demonstrated the highest
tensile strength at 28 days, 0.5% CHFRC exhibited
superior outcomes after 150 days.

These findings underscore the promise of CHF as
a sustainable material for enhancing concrete
performance. This research serves as a preliminary
study on the impact of cornhusk fiber on concrete
durability. A more extensive investigation is warranted
in the future to assess the effects of environmental
conditions over an extended time period.
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