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Abstract  

 

As the spectral data of the space image increases, the amount of information derived by processing per 

unit terrestrial area is amplified. A hyperspectral image is capable of mapping the classified features 

in accordance with defined objectives, and of providing a description of each objective in quantitative 

terms. A model for mapping gypsum quantity using spectral libraries and the SAM technique on a 

hyperspectral image was implemented. The distribution of gypsum was mapped for areas exceeding 

50% (per unit area), covering 1188 ha, and exceeding 70% (per unit area), covering 932 ha, and 

exceeding 85% (per unit area), covering 395 ha, along the study area of Jayroud, Damascus 

countryside. The model performance with respect to static indicators was as follows: the accuracy 

assessment value was -11.5, the root mean square error (RMSE) was 10.25, and the coefficient of 

determination (R²) was 0.94 for gypsum estimation in comparison with field observations. Maps of 

gypsum quantification and distribution are instrumental in the optimal investment planning and 

effective sustainable management of this resource. 
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Introduction 

As the spectral data of the space image increases, 

the amount of information derived by processing per 

unit terrestrial area also increases. At the initial stage of 

the process, which involves mapping the classified 

features into defined objectives and taxonomic 

categories, the objective is merely to describe and 

estimate the quantity of each of these objectives. 

Hyperspectral images provide an enormous amount of 

spectral data for all features present in the image. 

However, hyperspectral image processing algorithms 

and workflows are fundamentally different from those 

used for multispectral images (Smith, 2012; Yoon & 

Park, 2015).  

The measurement of the spectral reflectance of the 

objects under study across a wide spectral range and 

with high spectral accuracy is regarded as one of the 

most crucial techniques for classifying these objects and 

determining the degree of similarity and dissimilarity 

between them. In addition to determining the 

percentage of participation of an element in a 

compound, it is also possible to quantify the presence of 

this characteristic per unit area (Ehrenfeld et al., 2023). 

The spectral reflectance at each wavelength is regarded 

as an outcome that reflects both the physical and 

chemical attributes of the subject matter, facilitating the 

expeditious identification of physical characteristics 

that are not readily discernible and numerous chemical 

properties that necessitate laboratory-based analyses 

(Ehrenfeld et al., 2023; Smith, 2012; Sowmya et al., 

2019).  

Hyperspectral remote sensing is the primary source 

of information for mapping and exploring minerals 

(Ehrenfeld et al., 2023; Gan & Wang, 2007; Kruse, 

2012; Laakso et al., 2015; Schaepman et al., 2009; 

Sneha & Kaul, 2022; van der Meer et al., 2012; Yu et 

al., 2020). In addition, the original mineral was 

identified as a polymetallic ore comprising gold, silver, 

lead, and zinc (Wan et al., 2021). The mineral map also 

included copper and iron (Habashi et al., 2024). 

Furthermore, AL+OH minerals were detected (Satpathy 

et al., 2010), and materials on the object were identified 

(Vasile et al., 2024), basaltic exposures (Ibrahem N, 

2015), gypsum (Chatrenor et al., 2020; Fasnacht et al., 

2019; Milewski et al., 2019), characterization of 

different rocks and qualitative analysis to quantitative 

recognition (Arvelyna et al., 2011; Xu et al., 2010). 

Black et al. (2016) and Thompson (2013) have also 

contributed to this field (Black et al., 2016; Thompson 

et al., 2013). The exploration of solid minerals and oil 

and gas (Bishop et al., 2011; Liu et al., 2017) are 

additional areas of interest. The study of nutrients, 

organic carbon, moisture, salinization, and soil texture 

(Sowmya et al., 2019; Yu et al., 2020) represents 

another important aspect of this research. 

Hyperspectral image techniques are employed for 

a variety of purposes, including identification, 

classification, categorization, assessment, and mapping. 

Examples of such techniques include Support Vector 

Machines (SVM) (Chatrenor et al., 2020; Gleeson et al., 

2010), Spectral Angle Mapper (SAM). (Al-Allan et al., 

2013; Bharti et al., 2015; Ibrahem N, 2015; Shrestha et 

al., 2005; Wan et al., 2021) proposed the use of Spectral 

Feature Fitting (SFF) (Sowmya et al., 2019), Match 

Filtering (MF) (Wan et al., 2021), and Spectral Mixture 

Analysis (SMA) (Dutkiewicz et al., 2009; Gleeson et 

al., 2010) for hyperspectral image analysis. Other 

relevant studies on target detection (Sneha & Kaul, 

2022), minimum noise fraction transform (Wan et al., 

2021), recognition targets (Matteoli et al., 2018), by 

Zhang et al. (2011) and Ibrahem (20 15. Chattoraj et al. 

(2020), Feng et al. (2018), spectral libraries and expert 

systems(Chattoraj et al., 2020; Feng et al., 2018; 

Ibrahem N, 2015; Zhang et al., 2011), artificial neural 

networks (Fasnacht et al., 2019; Li et al., 2019), 

machine learning (Ehrenfeld et al., 2023; Li et al., 2019; 

Vasile et al., 2024). 

The majority of hyperspectral studies focusing on 

gypsum have employed a variety of hyperspectral 

techniques to identify and classify gypsum (Chatrenor 

et al., 2020; Fasnacht et al., 2019). Additionally, some 

studies have utilized hyperspectral remote sensing data 

to predict gypsum content and assess absolute 

quantification (Milewski et al., 2019). All hyperspectral 

studies working on gypsum assessment require an 

extensive training data set or rely on scene-dependent 

selection of target spectra for the gypsum analysis. 

Furthermore, they do not provide quantitative estimates 

of gypsum. 

Gypsum (hydrated calcium sulfate, CaSO₄.2H₂O) 

is regarded as one of the most abundant raw materials 

found in the Earth's crust. Gypsum is the most pervasive 

sulfurous mineral in nature, occurring on the Earth's 

surface or at depths reaching 350 meters. It is a widely 

utilized building material and an important component 

in the decorative industry. Additionally, gypsum is 

utilized in agricultural, medical, and educational 

contexts (Wikipedia contributors, 2024). 

In this study, spectral gypsum models were 

generated based on hyperspectral data within the 

wavelength range of 350 to 2500 nanometers of gypsum 

under five standard levels (50, 60, 70, 80, and 90%). 

The application of spectral gypsum models and 

hyperspectral imaging enabled the generation of maps 

of gypsum percent (exceeding 50%, 70%, and 85%) for 

the Jayroud region, situated to the northeast of 

Damascus in Syria. These maps facilitate the planning 

of optimal investment and sustainable resource 

management. 
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Methodology 

The research methodology is based on the 

flowchart architecture (Figure 1) and employs the 

following materials and methods: 

 

Figure 1. Flowchart of Research Methodology.  

Data Acquisition 

The study area is situated in the northeast region of 

the city of Damascus. It is administratively affiliated 

with the Jayroud region of the Damascus Governorate, 

as illustrated in Figure 2. 

 

Figure 2. Geographic Location of the Study Area on the 

Space Image of the Syria    

The hyperspectral space image of Hyperion 

comprises 242 spectral channels captured within the 

wavelength range of 355-2577 nm, with a wavelength 

range of 10-12 nm and a spatial resolution of 25 m.  The 

image utilized in this study is designated as 

EO1H1730362004297110PE. The acronym PE denotes 

the satellite EO1, which is designated Earth 

Observation 1, the Hyperion sensor, the path number 

173, and the row number 036. This image was captured 

in the year 2004, during the 297th day of the Julian 

period, specifically on October 23, 2004. The "1" that 

follows the "297" indicates that the Hyperion sensor is 

operational. The second digit indicates that the ALI 

sensor is active. The absence of a digit zero indicates 

that the AC sensor is off. P is a code for the pointing 

mode, and E is the code for the scene length (Pearlman 

et al., 2003). Hyperion was designed by NASA as one 

of the sensor systems on the Earth Observation (EO-1) 

platform in 2001. Figure 3a depicts the hyperspectral 

image of the study area in true colors, while Figure 3b 

illustrates the spectral composition of this hyperspectral 

image. 

 

Figure 3. Hyperspectral Image of the Study Area 

Multi-spectral images with a spatial resolution of 

15 meters were obtained from the TM Landsat satellite. 

These images were projected and mosaicked by control 

points in GORS (General Organization of Remote 

Sensing) in 2009. The resulting images are presented in 

Figures 2 and 4. 

 

Figure 4. TM Image of the Study Area 
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The topography is illustrated by a digital elevation 

model (DEM) image (Figure 5) with a resolution of 30 

meters (SRTM). The study area is situated at an average 

altitude of 777±15 meters above sea level. 

 

Figure 5. DEM Image of the Study Area 

Map of Rain-Stable Zones in Syria (Figure 6). The 

study area is situated within the fifth rain stability zone, 

with an annual rainfall of less than 150 mm. In arid and 

semi-arid regions, the accumulation of the evaporite 

mineral gypsum (Herrero et al., 2009) can have a 

significant impact on soil and sedimentary processes. 

 

Figure 6. Map of Rain Stable Zones for the Study Area 

The field spectral data were obtained using a 

FieldSpec®Pro spectroradiometer (Figure 7) within the 

spectral range of 350-2500 nm at a resolution of 1 nm 

with 2150 spectral channels. 

 

Figure 7. FieldSpec®Pro Device for Measuring Spectral 

Reflectance in the Field 

The geographical coordinates of field points are 

determined by a Global Positioning System (GPS) 

device of the Garmin etrex type (Figure 8). 

 

Figure 8. Garmin Etrex GPS device 

Pre-Processing 

Hyperspectral Image Corrections 

The Radiometric Correction 

One of the primary image acquisition processes is 

radiometric correction and calibration (Chang, 2003; 

Sneha & Kaul, 2022). A total of 242 distinct spectral 

channels were collected, encompassing a 

comprehensive spectrum from 355 to 2577 nanometers. 

The Level 1 radiometric product comprises a total of 

242 bands, of which only 198 have been calibrated. The 

calibrated channels for the visible-near infrared (VNIR) 

range are 8-57, while the same range for the shortwave 

infrared (SWIR) is 77-224. The rationale for not 

calibrating all 242 channels primarily stems from the 

detector's low responsivity. The uncalibrated bands are 

set to zero on those channels. A total of 196 unique 

channels are present (Longhenry, 2020), due to an 

overlap between the VNIR and SWIR focal planes. This 

overlap is observed between the VNIR band 56 (915.23 

nm) and 57 (925.41 nm) and the SWIR band 77 (912.45 

nm) and 78 (922.54 nm). In the experiment, all 

uncalibrated bands and bands 77 and 78 are removed 

prior to further processing. The digital values of the 

Level 1 product are 16-bit radiances and are stored as a 

16-bit signed integer. Scaling factors of 80 and 40, 

respectively, are applied to the SWIR and VNIR bands. 

The units are W/m² SRm (Longhenry, 2020). 

VNIR L = Digital Number / 40 

SWIR L = Digital Number / 80 

The Atmospheric Correction 

Due to the absorption and scattering of solar 

radiation by atmospheric gases and aerosols along the 

path between the sun and the sensor in the visible and 

near-infrared spectral regions, the hyperspectral 

imaging data is influenced by atmospheric effects. In 

order to employ hyperspectral imaging data for 
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quantitative remote sensing of land surfaces, it is 

necessary to remove the atmospheric effects. (Gao et al., 

2009; Sneha & Kaul, 2022). 

The FLAASH (Fast Line-of-sight Atmospheric 

Analysis of Spectral Hypercubes) technique is 

employed for the purpose of atmospheric correction. 

FLAASH is designed to eliminate atmospheric effects 

caused by molecular and particulate scattering and 

absorption from the radiance at the sensor and to obtain 

reflectance at the surface. The FLAASH atmospheric 

correction code, which derives its physics-based 

algorithm from the MODTRAN4 radiative transfer 

code (Felde et al., 2003), is capable of correcting for 

atmospheric effects. Figure 9 illustrates the spectral 

profile of a pixel before (Figure 9a) and after (Figure 

9b) atmospheric correction. 

 

Figure 9. Spectral Profile of Pixel: Before (a) and After (b) 

Atmospheric Correction 

The Geometric Correction 

The hyperspectral space image was corrected 

geometrically (Chang, 2003) in accordance with the TM 

LANDSAT image projected for Syria, which was 

prepared by GORS (Figure 1). Figure 10 illustrates the 

space image before (Figure 10a) and after (Figure 10b) 

geometric correction.  

 

Figure 10. Hyperion EO-1 Image of the Study Area Before 

(a) and After (b) Geometric Correction. 

Field Spectral Data Formatting 

On October 10, 2019, radiometric spectral readings 

for gypsum percent at five levels (50, 60, 70, 80, and 

90%) were recorded using the radiometric RS3 

program. The spectral data records were displayed and 

analyzed using the ViewSpecPro program. The spectral 

reflectance data were formatted using the Excel 

program to facilitate the visualization of the spectral 

signature (within the range of 350 to 2500 nm) of 

gypsum at the five specified percent levels (Figure 11). 

 

Figure 11. Spectral Signature of Gypsum at 5 Standard 

Levels. 

The spectral signature of gypsum exhibited a 

curved dependence on wavelength and on the percent of 

gypsum in the scene reflectance (unit area). As the 

percentage of gypsum increased, the spectral 

reflectance value exhibited a positive correlation in the 

range of 350–1850 nm, while displaying a negative 

correlation in the range of 1900–2500 nm. As the 

percentage of gypsum in a given sample increase, the 

reflectance values of the sample's spectra exhibit an 

overall increase within the range of 350–1850 nm. 

There was a significant discrepancy between the 

recorded spectra reflectance values as the gypsum 

percent varied in the ranges of 800–1350 nm and 1600–

1720 nm. This finding aligns with the observations 

made by Ehrenfeld et al. (2023). It is evident that 

supervised analysis using spectral data necessitates a 

comprehensive understanding of the response variables 

and a substantial number of spectral data points.   

Processing 

The objective is to program the spectral signature 

of gypsum in the form of spectral libraries. The 

implementation of spectral libraries in the corrected 

hyperspectral image is achieved through the utilization 

of the Spectral Angle Mapper (SAM) technique, which 

facilitates the mapping of gypsum percent. The Spectral 

Angle Mapper (SAM) is a method that relies on a 

comparison between the target spectrum and a reference 

spectrum (which is determined in a laboratory setting) 

and the target spectrum in the corrected image. In the 

classification process, this method employs a 

stereoscopic angle (n dimensions) to align the pixels 

with the reference spectrum. This function determines 

the spectral similarity between two spectra by 

calculating the angle between the two spectra and 

treating them as rays in a space whose dimensions are 

equal to the number of spectral channels. Each ray has 

a specific length and direction, with the length of the 

beam representing the brightness in the pixel and the 
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direction representing the spectral characteristic of the 

pixel. A spectral angle may be represented between two 

bands in a plane, as illustrated in Figure 12a, or 

between three spectral bands (i.e., a three-dimensional 

space), as shown in Figure 12b (Kruse et al., 1993). 

 

Figure 12. SAM Between Two Spectra in the Plane (a) and 

Three-Dimensional Space (b) 

This method determines the degree of similarity 

between an unknown spectrum (t) and a reference 

spectrum (r) in an n-dimensional space, where n 

represents the number of spectral channels present in 

the image. This is achieved by applying the following 

equation, as proposed by Kruse et al. (1993):  

 

Results and Discussion 

Space Data in Mapping Gypsum Quantify  

The spectral libraries of gypsum at varying levels 

utilized by the SAM technique for gypsum mapping 

quantification yielded three maps of gypsum presence 

per terrestrial unit. Figure 13 illustrates the 

geographical distribution of gypsum percent mapped 

across three quantifying ranges.  

 

Figure 13. Maps of Gypsum Percent and Spread for Jayroud 

Region.  

Figure 13a depicts the geographic distribution of 

gypsum, which has spread over an area exceeding 50% 

of the total area (25*25m) and encompasses 1188 ha. 

Figure 13b illustrates the spread of gypsum exceeding 

70%, encompassing an area of 932 hectares. 

Additionally, the map in Figure 13c depicts the spread 

of gypsum exceeding 85% and occupying 395 ha. This 

result is more precise and encompasses a broader range 

of wavelengths than those determined by Milewski et 

al. (2019). Maps that quantify gypsum and its 

distribution are invaluable for optimal investment 

planning and effective, sustainable management of this 

resource.  

Accuracy Assessment  

The efficacy of hyperspectral image-based gypsum 

map quantification was evaluated through a 

comparative analysis of field observations and the 

resulting accuracy assessment. A total of 48 field 

locations were selected based on the gypsum maps, 

which represent three distinct quantity levels (Figure 

14). Twenty field locations exhibited gypsum levels 

between 50 and 70%, while fifteen locations 

demonstrated gypsum levels between 70 and 85%. 

Additionally, fifteen locations displayed gypsum levels 

between 85 and 95%. Concurrently, forty-eight 

locations exhibited gypsum levels between 50 and 95%. 

 

Figure 14. Locations of Field Points Signed on the Space 

Image in Jayroud Region 

Static indicators were employed for the assessment 

of model performance in the estimation of gypsum by 

equations (Dodge, 2008), including the calculation of 

accuracy metrics such as the root-mean-square error 

(RMSE) and the determination coefficient (R2). 

ACC =
1

𝑛
∗ ∑(

𝑂𝑖 − P𝑖

O𝑖
) ∗ 100

𝑛

𝑖=1

 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (P𝑖 − O𝑖)2

𝑛

𝑖
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𝑅2 =  1 −  
∑ (O𝑖 − P𝑖)2𝑛

𝑖

∑ (O𝑖 − Ō𝑖)2𝑛
𝑖

 

[where: (acc) is the accuracy assessment, (n) is 

number of samples, O and P are the observed/ recorded 

and predicted gypsum percent, respectively, for field i 

up to n]. 

Figure 15 depicts the static indicators' results of 

the model performance, which estimate the gypsum 

percent and spread using a hyperspectral image in the 

Jayroud region. 

The accuracy assessment value of the model 

performance is -11.5, indicating that the predicted 

gypsum percent is less than the observed value by 

approximately 11.5%. The root mean square error 

(RMSE) was found to be 10.25, and the coefficient of 

determination (R²) was 0.8 for gypsum percent 50-70%, 

0.73 for 70-85%, 0.72 for 85-95%, and 0.94 for gypsum 

percent more 50%. These results indicate a significant 

confidence in the model's ability to map and estimate 

gypsum, particularly within a wide range of gypsum 

presence. This is a more precise and accurate 

determination than that of Chatrenor et al. (2020) and 

Milewski et al. (2019). 

 

Figure 15. Static Indicators Diagram for Performance the 

Estimation Gypsum Model Using Hyperspectral Image in 

Jayroud Region. 

Conclusion 

The model of mapping gypsum using spectral 

libraries and the SAM technique on hyperspectral 

images demonstrated a high degree of accuracy when 

compared with field observations. The aforementioned 

advantages can be optimized through the use of an 

unmanned aerial vehicle (UAV) for periodic monitoring 

and high-spatial resolution. Additionally, the 

application of machine learning (ML) and artificial 

intelligence (AI) methods in data processing enables the 

extraction of information from large hyperspectral data 

sets. Periodic mapping and high quantifying facilitate 

optimal investment planning and effective sustainable 

management of resources.  
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